Flood Risk Management
Nonstructural Flood Proofing

CAFM Annual Conference

Cindy Baumann, P.E., BCEE, CFM
October 29, 2014
Outline

• Project History & Background
• Existing Conditions:
 Hydrologic & Hydraulic Analysis
 Structure Inventory
• Alternatives
• Nonstructural Plan
• Recommendations
Project Background

Byram River Flood Risk Management Study
- Town of Greenwich
- Army Corps of Engineers

Feasibility Study
- Hydrologic & Hydraulic Analysis
- Structure Inventory
- Geotechnical Evaluation
- Environmental Inventory Report
- Nonstructural Analysis
- Alternatives Analysis
- Impact Assessment
Hydrologic & Hydraulic Analysis

- **Existing Conditions**
- **Modeling**
 - Hydrologic Model: **HEC-HMS**
 - Hydraulic Model: **HEC-RAS**
 - 10-, 50-, 100-, and 500-year Storms
- **Development of Alternatives**
 - Initial screening of mitigation measures
 - Modifications to existing model to provide comparative analysis of mitigation measures

Figure 8.11
Design Flood Inundation
Existing Conditions
Byars River 2 of 4
Structure Inventory

- Structure Type
- Condition
- Land Use
- Construction Type
- Garage
- Foundation
- Ground Elevation
- Low Opening
- Main Floor Elevation
- Assessed Value
Development of Alternatives

- Four Alternatives
 - No Action
 - Nonstructural
 - Structural
 - Combination of Measures
Development of Alternatives – Structural Alternative

• Reduces the frequency of flooding
• Alternatives Considered:
 – Diversion/Channel Modifications
 – Storage
 – Levees
 – Floodwalls
 – Pumps
 – Bridge Modifications
• Structural Alternatives:
 – Floodwall, Levee & Channel Modifications (1977 Recommendations)
 – Combination – Bridge Replacement, Modifications to 1977 Recommendations & Nonstructural
Development of Alternatives

- **Impact Assessment**
 - Hydrology & Hydraulics
 - Traffic & Transportation
 - Geotechnical
 - Structural
 - Environmental
 - Utilities
Nonstructural Plan

- Evaluated all 493 structures for the 10 year, 100 year and 500 year storm events
- Recommendation for flood proofing

Elevation | Relocation | Localized Levees and ringwalls | Dry Floodproofing | Wet Floodproofing
Elevation

• Raising a home to prevent floodwaters from reaching living areas
• Foundation or elevate on fill, piles, or columns

Things to consider:
 – House must be structurally sound
 – Homes with basement will require it to be filled as part of elevation
 – Space below a house on an open elevation can be utilized for parking
Ringwalls

- Small floodwall or levee, around your home to hold back floodwaters
- Surround a home or protect isolated openings such as doors, windows, and walkout on-grade basements

Things to consider:
- Home and surrounding area will be protected from inundation
- No significant changes to the home will be required
- Designed for an elevation equal to the base flood elevation
Dry Flood Proofing

- Sealing your home to prevent floodwater from entering
- Not recommended for flood depths greater than 3-feet

Things to consider:
- Requires human intervention
- Seal walls with waterproof coatings, impermeable membranes, or supplemental layers of masonry or concrete
- Shield all openings, such as doors and windows, below the design flood elevation
Wet Flood Proofing

- Modifying uninhabited portions of the home so floodwaters will enter but not cause significant damage
- Reduces risk of structural collapse as hydrostatic pressures equalizes

Things to consider:
- Requires space above the design flood elevation where items can be stored temporarily or permanently
- Service equipment should be protected by relocating above flood elevation or protecting it in place
- Requires removal of water after the event
Nonstructural Plan

- Recommendations for Each Storm Event
 - 10 Year
 - 100 Year
 - 500 Year
- Based on Structure Type & Use
- Determine Flood Proof Measure Based on Algorithm Results
 - Slab-on-grade
 - Subgrade Basement
 - Elevated
 - Bi-levels/Raised Ranches
 - Raised Foundations/Split Levels
 - Large Residential
Nonstructural Plan

- **Algorithms**
 - Structure Type
 - Use
 - Flood Elevation (FE)
 - Ground Elevation (GE)
 - Flood Depth (FD)
 - Main Floor Elevation (ME)
 - Low Opening Elevation (LE)

- **Determine Details for Recommended Flood Proof Measure**

Structure Type

Slab-on-Grade Foundation

Description

Structures that are constructed on a slab foundation at grade.

Assumptions

Structures will not be dry flood proofed for main floor flood depths greater than 2-feet.

Algorithm

Residential

1. If FE < GE then No Flood Proofing Required
2. If FE+1 < ME then No Flood Proofing Required
3. If FE+1 > ME then
 - a. If FE+1 > ME+3 then
 - i. If Poor Condition then Buyout
 - ii. Otherwise Elevation
 - b. If FE+1 < ME+3 then
 - i. If FE+1 < GE+6 then Dry Flood Proofing or Ringwall
 - ii. If FE+1 > GE+6 then Dry Flood Proofing

Nonresidential

1. If FE<GE then No Flood Proofing Required
2. If Wood or Metal Construction Type then
 - a. If FE+1 < ME then No Flood Proofing Required
 - b. If FE+1 > ME then
 - i. If FE+1 > ME+3 then
 - 1. If Poor Condition then Buyout
 - 2. Otherwise Elevation
 - ii. If FE+1 < ME+3 then Dry Flood Proofing or Ringwall
3. If Masonry Construction Type then
 - a. If FE+1 < ME then No Flood Proofing Required
 - b. If FE+1 > ME then
 - i. If FE+1 > GE+3 then Ringwall
 - ii. If FE+1 < GE+3 then Dry Flood Proofing or Ringwall
Nonstructural Plan

10 Year Water Surface Elevations

47 Flood Proofing Measures
- Dry Flood Proofing
- Wet Flood Proofing
- Floodwall
- Elevation
- Acquisition

Design to 100 Year Elevation
Nonstructural Plan – 10 Year

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Flood Proofing Measure</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry</td>
<td>Wet</td>
<td>Ringwall</td>
<td>Elevation</td>
<td>Acquisition</td>
</tr>
<tr>
<td>Slab-on-Grade</td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Subgrade Basement</td>
<td>4</td>
<td></td>
<td>1</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Elevated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi-Levels</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Raised Ranch</td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Raised Foundation</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Split Level</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Large Residential</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td>29</td>
<td>1</td>
</tr>
</tbody>
</table>
Nonstructural Plan

100 Year Water Surface Elevations

202 Flood Proofing Measures
 – Dry Flood Proofing
 – Wet Flood Proofing
 – Floodwall
 – Elevation
 – Acquisition
Nonstructural Plan – 100 Year

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Flood Proofing Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry</td>
</tr>
<tr>
<td>Slab-on-Grade</td>
<td>4</td>
</tr>
<tr>
<td>Subgrade Basement</td>
<td>34</td>
</tr>
<tr>
<td>Elevated</td>
<td>1</td>
</tr>
<tr>
<td>Bi-Levels</td>
<td>1</td>
</tr>
<tr>
<td>Raised Ranch</td>
<td>6</td>
</tr>
<tr>
<td>Raised Foundation</td>
<td></td>
</tr>
<tr>
<td>Split Level</td>
<td>1</td>
</tr>
<tr>
<td>Large Residential</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
</tr>
</tbody>
</table>
Nonstructural Plan

Detailed quantities for each alternative
- Storm event
- Structure type
- Flood proofing measure

<table>
<thead>
<tr>
<th>STREET ADDRESS</th>
<th>PARCEL PERIMETER (RINGWALL LENGTH, FT)</th>
<th>HEIGHT OF 10-YEAR RINGWALL</th>
<th>HEIGHT OF 100-YEAR RINGWALL</th>
<th>HEIGHT OF 500-YEAR RINGWALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillside Avenue</td>
<td>Apart of 13 Riverdale Ringwall</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Riverdale Avenue</td>
<td>700</td>
<td>7</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Riverdale Avenue</td>
<td></td>
<td>450</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Riverdale Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Putnam Avenue Lot 48A</td>
<td>1,300</td>
<td>5</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Den Lane</td>
<td>200</td>
<td>5</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Pemberwick Road Building 2</td>
<td>650</td>
<td>-</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Pemberwick Road Building 3</td>
<td>450</td>
<td>7</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Glenville Street</td>
<td>600</td>
<td>19</td>
<td>21</td>
<td>23</td>
</tr>
</tbody>
</table>
Cost Benefit Analysis

- **Benefit Cost Ratio > 1**
- **No Action**
 - $5M - $8M Estimated Annual Damages
- **Nonstructural**
 - $17M - $50M Based on Protection Level
- **Structural (1977 Modified Plan)**
 - $50M - $56M
- **Combination Plan**
 - >$56M

IF BCR > 1

Tentatively Selected Plan (TSP)
Proposed Nonstructural Plan

<table>
<thead>
<tr>
<th>Non-Structural Measure</th>
<th>Number of Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-YR</td>
</tr>
<tr>
<td>Wet or Dry Floodproofing</td>
<td>6</td>
</tr>
<tr>
<td>Localized Ringwalls / Levees</td>
<td>11</td>
</tr>
<tr>
<td>Elevation (or raising) on Piers</td>
<td>29</td>
</tr>
<tr>
<td>Buyout / Acquisition / Relocation</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
</tr>
</tbody>
</table>

Estimated Cost Range

- $17M to $21M
- $24M to $30M
- $45M to $50M
Recommendations

• Selected Alternative Needs to Meet BCR >1
• Cost < 4 x Damages
• Damages $5M - $8M
• Recommended Project $20M - $32M
• Structural Plans BCR <1 (i.e. too costly to support damages)
• 10 Year or 100 Year Nonstructural Plan BCR close to 1
Next Steps

- More Detailed Structure Inventory - Survey
- Refine Flood Proofing Measures for 10 year and 100 year storm events
- More Detailed Cost Estimate for each Structure/Recommended Flood Measure
- Determine BCR for each alternative
- Select the Tentatively Selected Plan

- Nonstructural Plan is the Cost Beneficial Alternative
Questions?

Contact:
Cindy Baumann, P.E., BCEE, CFM
CDM Smith
baumannca@cdmsmith.com
(401) 457-0334