Massachusetts Coastal Municipalities Flood Risk Assessment & Adaptation Planning

Nasser Brahim
Climate Risk & Resiliency Specialist

Connecticut Association of Flood Managers October 21, 2015

Project Experience

- Massport
- Cambridge, MA
- Boston, MA
- Gloucester, MA
- Swampscott, MA
- Hingham, MA
- Hull, MA
- Oak Bluffs, MA

- Scituate, MA
- Marshfield, MA
- Duxbury, MA
- Army National Guard,
 MA
- Healthcare Client, MA
- American Water, NJ
- Washington, DC

*Funded by MA Coastal Zone Management Coastal Community Resilience Grants (~\$50,000 to \$100,000 each)

- Develop appropriate sea level rise and storm surge scenarios
- Understand vulnerability of <u>municipal</u> infrastructure and natural resources to sea level rise and storm surge
- Develop potential short-, mid- and longterm adaptation strategies

- Produce high quality maps, graphics and GIS layers
- Undertake public outreach and education programs

Project Approach

Phase I

Sea Level Rise/Storm Surge Projections

Scenario Development

Phase II

Mapping Inundation Modeling Results

Vulnerability/Risk Assessment

Phase III

Develop Adaptation Strategies

Public Outreach

Planning Horizons

- 2013 Present
- 2030 15 years out Near term
- 2070 55 years out Long term

Hydrodynamic Water Surface Model

A Probability-Based Model

Not "worst-case" scenarios
but
"worst-likely" scenarios

Vulnerability Assessment based on Risk

Risk (R) = Probability of Flooding (P) x
Consequence of Flooding (C)

R = P X C

Consequence of Flooding based on:

- Area of service loss
- Duration of service loss
- Cost of damage
- Impacts to public safety and emergency services
- Impacts to economic activities
- Impacts to public health and the environment

What are some key takeaways that might apply to CT municipalities?

The highest risk assets tend to be:

- Seawalls and other coastal structures, particularly in harbor areas
- Major roadways with low points along the coast or at wetland crossings
- Wastewater infrastructure

COASTAL STRUCTURES

Seawalls, Bulkheads & Revetments

High Risk Inner Harbor Structures

Additional height needed for 1% annual flood protection

Municipality	Present	2030	2070
Gloucester	0.0* - 2.8 ft *1 of 9 structures	0.2 - 3.0 ft	4.0 – 6.8 ft
Hingham	0.0* - 3.7 ft *5 of 12 structures	0.0* - 5.2 ft *3 of 12 structures	1.9 – 8.0 ft
Oak Bluffs	0.0* - 6.2 ft *1 of 5 structures	0.7 - 7.2 ft	3.5 – 10 ft

With no action, municipal coastal infrastructure will provide decreasing levels of protection over time

Rt. 3A @ Inner Harbor – Hingham 2030 1% (100 YR)

Rt. 3A @ Inner Harbor – Hingham 2030 1% (100 YR)

Route 3A @ Inner Harbor – Hingham

Gloucester

- C Harbor seawalls are mostly private, lots of waterdependent industry – incentivize or compel raising
- Wet and dry floodproofing for residential/commercial
- C Upland "containment" options

C Hingham

 All municipal structures, site can accommodate gray and green infrastructure

Oak Bluffs

C Also all municipal, but design would need to take into account tourism, water transit, and recreational uses.

Oak Bluffs Inner Harbor

Harbor Bulkhead - Existing

*Not drawn to scale, for illustrative purposes only

Existing Sheet Pile Bulkhead with Concrete Cap

Existing Sidewalk

Harbor Bulkhead - Present

Harbor Bulkhead - 2030

Harbor Bulkhead - 2070

Harbor Bulkhead - Option A

No Storm - Passive Barrier Stored in Sidewalk

12.5 ft NAVD88 (2070)

9.7 ft NAVD88 (2030)

Harbor Bulkhead - Option A

Storm Event - Passive Barrier Rotated into Position

Typical Cross Section

Lourdes Hospital, Binghamton, NY

Example of Passive Flood Barrier Floodbreak.com

Harbor Bulkhead - Option B

Harbor Bulkhead - Option B

Harbor Bulkhead - Option B

Example of Glass Flood Barrier

Infill Panel to be Installed to Fill Openings During Storm Events

MAJOR ROADWAYS

Transportation infrastructure can be a major source of risk, but it can also be harnessed for resiliency

2070: 1% Annual Probability – Flooded Streets Gloucester (≈100 yr Recurrence)

2030: 1% Annual Probability – Flooded Streets Gloucester (≈100 yr Recurrence)

Focus on addressing flood pathways with a high probability of exposing clusters of municipal assets

The costs may be higher than addressing each asset individually, but the co-benefits for the community are often vastly greater

Route 3A @ Broad Cove – Hingham

Rt. 3A at Broad Cove 2030 1% (100 YR)

Rt. 3A at Broad Cove 2070 1% (100 YR)

Route 3A @ Broad Cove – Hingham

Existing Conditions

14.0 ft NAVD88 (2070 @ 0.2%)

12.8 ft NAVD 88 (2070 @ 1%)

10.2 ft NAVD88 (2030 @ 0.2%)

*Not drawn to scale, for illustrative purposes only

Low Cost / Near Term Option: 1-2 ft Wall at Edge of Sidewalk

14.0 ft NAVD88 (2070 @ 0.2%)

12.8 ft NAVD 88 (2070 @ 1%)

Low Cost / Medium Term Option: 3.5 ft Wall at Edge of Sidewalk

14.0 ft NAVD88 (2070 @ 0.2%)

Long Term Option:

Over Long Term, Increasing Wall Height Unsustainable

Existing Conditions

14.0 ft NAVD88 (2070 @ 0.2%)

12.8 ft NAVD 88 (2070 @ 1%)

10.2 ft NAVD88 (2030 @ 0.2%)

*Not drawn to scale, for illustrative purposes only

Recommended Option / Medium Term: Raise Road and Sidewalk to 11 ft ± NAVD

14.0 ft NAVD88 (2070 @ 0.2%)

12.8 ft NAVD 88 (2070 @ 1%)

Recommended Option / Medium Term: Provides Flexibility to Increase Level of Protection Later

14.0 ft NAVD88 (2070 @ 0.2%)

12.8 ft NAVD 88 (2070 @ 1%)

Recommended Option / Long Term: Provides Flexibility to Increase Level of Protection Later

14.0 ft NAVD88 (2070 @ 0.2%)

Recommended Option / Long Term: Provides Flexibility to Increase Level of Protection Later

Questions/Discussion

Nasser Brahim
Kleinfelder
617-498-4774
nbrahim@kleinfelder.com