Keeping the Lights On:
Energy Facility Flood Mitigation Projects in New England –
Takeaways for Protecting Critical Assets and Infrastructure

Presented by: Gary McAllister, P.E.
Jennifer Burke, P.E.
Topics

• Background

• Flood Resilience Options

• GZA’s Work
 • Permanent Flood Control Solutions
 • Temporary and Mobilized Solutions
 • Testing

• Conclusions/Takeaways
Background

- Climate change/sea level rise/larger events
- Super Storm Sandy
 - 8.1M homes without power in 17 states
 - 57k utility workers assist in returning power to NYC
- Post-Super Storm Sandy Lessons
 - Restoring power can be:
 - Time consuming
 - Costly
 - A public relations nightmare
Flood Risk Mitigation – Substation Specific Issues

- Security
- Safety
- Accessibility and Space Limitations
- Underground Penetrations

Plus typical issues:
- Cost
- Maintenance
- Schedule
- Compatibility with future projects
- Site constraints
- Permitting – comp. storage
- Risks/benefits
- Adaptability to climate change
Protecting Critical Infrastructure

Critical Infrastructure

- Water / Wastewater
- Chemical
- Commercial
- Communications
- Manufacturing
- Dams
- Defense Industrial Base
- Emergency Services
- Energy
- Nuclear
- IT
- Healthcare / Public Health
- Government
- Financial
- Food / Agriculture
Flood Resilience Options

- Physical Options
 - No Flooding
 - Controlled Flooding

- What gets protected?

- Longevity of Solution
 - Long-term
 - Interim
 - Mobilized

Photo Source: fema.gov

Floodwall protects Our Lady of Lourdes Hospital in Binghamton, NY along Susquehanna River in 2011 during Tropical Storm Lee
Flood Resilience - Option 1
No Flooding

- Re-Build above DFE
- Permanent Barrier
- Mobilized Barrier
- Interim Barrier
Flood Resilience - Option 2
Controlled Flooding

Raise Panels / Equipment

Dry Floodproofing
Permanent Flood Control Barriers

Steel Sheet Pile

Concrete

Vinyl Sheet Pile

Fiberglass Sheet Pile
Interim Flood Control Barriers

- Sand Bag (Big Bag)
- Reinforced Barrier (HESCO)
- Timber Wall
- Shaped Bag (Trap Bag)
Mobilized Flood Control Barriers

Aquafence
Invisible Wall
Floodstop
Sand Bag
Bladder Dam
Flood Control Barriers
Control of Water

Duck bill

Interior Sump & Pump

Exterior Sumps & Pumps

Flap gates

www.duckbillvalve.net www.drainagesolutionsinc.com
Project Overview

• Permanent flood control concepts
 • 11 substations in New England
 • Design Flood Elevation (DFE)
 • Set based on ASCE-24
 • Base Flood Elevation (BFE) +2 (or +3)

• Interim flood control concepts
 • 22 substations in New England
 • Flood Contingency Plans (FCPs)
 • Temporary controls (2-3 years)
 • Mobilized controls
Permanent Flood Control Concept Plans

FEMA Flood Zone Boundaries

Protected Area

River
Permanent Concepts – Site Specific Realities

Aging seawall

Property constraints

Historical structures, tunnels/conduits
Flood Control Concept Selection Process

"The Matrix"
“The Results”

<table>
<thead>
<tr>
<th>Engineering/Installation / Construction</th>
<th>Risk/Opportunity</th>
<th>Operations, Maintenance, & Replacement Cost (thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost (thousands)</td>
<td>Critical Path Duration (months)</td>
<td>Weighted Risk</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Alternative 1 — Floodwall around Existing 23kV Yard and Building Housing 4kV yard, Flood-proofing north wall of building.</td>
<td>$3,824</td>
<td>40.0</td>
</tr>
<tr>
<td>Alternative 2 — Construct new raised 23kV yard, decommission existing 23kV yard, Allow building to flood</td>
<td>$3,379</td>
<td>51.5</td>
</tr>
<tr>
<td>Alternative 3 — Floodwall around 23kV yard ONLY, Allow building to flood</td>
<td>$2,503</td>
<td>36.5</td>
</tr>
</tbody>
</table>
PHASE 2: PROPOSED 200 GPM PUMP

PHASE 1: SEAL CONDUITS

PHASE 2: PROPOSED 100 GPM PUMP

PHASE 2: 36-INCH FLOODSTOP BARRIER SYSTEM MIN EL 101.5’
(SEE DETAIL)
COORDINATE FENCE AND EQUIPMENT CLEARANCES
Flood Contingency Plans/Mobilized Concepts Testing

- Geotextile between cells
- Geotextile not folded under

Mock-Up #1
HESCO Testing

End dumped fill
Mock-Up #1
HESCO Testing

Excessive Internal Seepage

Increasing Flow, Piping
Flood Contingency Plans/
Mobilized Concepts Testing

Mock-Up #1
HESCO Testing

Loss of Strength – Potential Failure of Multiple Cells

Loss of Fill – Imminent Failure of Cell
Mock-Up #2
HESCO Testing

Geotextile folded under this time

Geotextile damage due to compaction method
1. Need to listen and understand Client needs
 • Facility – past, present, and future
 • Operations and capabilities
 • What needs protection?

2. Thorough design development is key

3. Proper installation, training, and execution are essential
Gary McAllister, P.E.
GZA GeoEnvironmental, Inc.
477 Congress St., Suite 700
Portland, ME 04101
(207) 879-9190
gary.mcallister@gza.com

Jennifer Burke, P.E.
GZA GeoEnvironmental, Inc.
1350 Main Street, Suite 1400
Springfield, MA 01103
(413) 726-2100
jennifer.burke@gza.com