Statewide Resilience Master Planning: Flood Vulnerability and Adaptation

Adapt, Thrive, and Survive Climate Impacts

Frank Ricciardi, PE, LSP, MVP

Weston & Sampson – Rocky Hill, CT

- Full service, Multi-disciplinary office
- Staff includes Hydraulics/Hydrology, site civil, transportation, structural, environmental, and traffic engineers as well as licensed survey staff

Designers of resilient infrastructure!

Agenda

- Statewide Resiliency Master Plan (SRMP) Division of Capital Asset Management and Maintenance (DCAMM), Massachusetts
 - PHASE I: Benchmarking & Criticality Analysis and Climate Scenario Selection
 - PHASE II: Risk and Vulnerability Analysis & Pilot Site Workshops
 - PHASE III: Compilation and Distribution of Guidelines
- Outcomes of SRMP
- Implementing a similar process for CT

Acknowledgements

- Massachusetts DCAMM
- "Re-Team" Resiliency team of DCAMM and MEMA staff
- Technical Assistance Group (TAG) Representatives from MBTA Massport, Partners Healthcare, ULI, MAPC, UMass, MassDOT
- Our project teaming partner:

Goal and Scope of Massachusetts SRMP Project

SRMP Project Goal Considerations

- Review DCAMM's portfolio vulnerability to climate change impacts and develop design guidelines which encourage climate adaptation and resilience.
- DCAMM Mission Specific Goals
- Agency Goals for Service Continuity
- Goals for Resilient Design Guidelines

Phase I:

Benchmarking &
Criticality Analysis

Phase II: Risk & Vulnerability Assessment

Phase III: Design Guidelines Development

Summer-Fall 2016

Fall- Winter 2016/17

Spring-Summer 2017

PHASE 1 - BENCHMARKING & CRITICALITY ANALYSIS

GOAL: Identify representative, critical Commonwealth's assets for Risk and Vulnerability Analysis (RVA) and Guideline Development

- -Portfolio Review
- Criticality Definition
- DCAMM Survey
- -Criticality Worksheet
- Prioritization

DCAMM Portfolio – Over 8300 Assets

SURVEY AND CRITICALITY WORKSHEET

Criticality

Q18: Interdependency:Do other facilities or Commonwealth assets depend of this facility?

Answered: 46 Skipped: 8

Scope

Geographic area and population affected by loss of facility Time

Length of time a facility can be inoperable without consequences

Severity

Public Health and Safety

Economic Effect

Environmental Effect

Interdependency

Political Effect

Psychological Effect

Portfolio Screening

- > Pre-screen assets to remove duplicate entries, fences, sheds and other minor items
- > Survey DCAMM directors/executives to further understand portfolio nature
- > Interview property managers to understand where climate impacts exist currently
- Use existing mapping to identify facilities with short term risk

PHASE 1 – CLIMATE SCENARIO SELECTION

PHASE 1 – CLIMATE SCENARIO SELECTION

- Synthesis of available relevant technical analyses and reports
 - Coastal Geomorphology
 - Watershed Characteristics
 - Municipal Asset Locations and Information
- Compilation of data into a Geographic Information System (GIS)
- Development of Study Scenarios
- Preliminary review of relevant regulations

Precipitation and Inland Flooding

Develop Runoff Model

- Army Corps HEC-HMS software
- NRCS unit hydrograph method
 - Drainage Area
 - Curve Number
 - Time of Concentration
- Include significant dams/impoundments

Model high-intensity rainfall events

NRCC/Cornell rainfall data, includes
 climate change up to ~2010

HEC-HMS Impoundment Runoff

Climate Scenarios: 2030 and 2070

CLIMATE PARAMETERS		EXISTING		2030			2070		
		DATA	MAP	DATA	MAP	DATA	MAP		
:RS	SEA LEVEL RISE/ STORM SURGE	NA	NA	SLOSH CAT1 & BH-FRM data in avail. locations	*	SLOSH CAT2 & BH-FRM data in avail. locations	4		
PARAMETERS	PRECIPITATION	Extreme Precipitation Amount greater than 99 percentile from Argonne Lab (1995-2004)	~	FEMA 100 Year / Extreme Precipitation Amount greater than 99 percentile from Argonne Lab (2045-2054)	√	FEMA 500 Year / Extreme Precipitation Amount greater than 99 percentile from Argonne Lab (2085-2094)	✓		
TIER 1 PA	TEMPERATURE	Number of heat waves per decade and average annual max temperature from Argonne Lab (1995-2004)	√ (2 maps)	Number of heat waves per decade and average annual max temperature from Argonne Lab (2045-2054)	√ (2 maps)	Number of heat waves per decade and average annual max temperature from Argonne Lab (2085-2094)	√ (2 maps)		
S	WINTER STORMS	MEMA	✓	NA	NA	NA	NA		
ER	FIRE	MEMA	4	NA	NA	NA	NA		
PARAMETERS	DROUGHT	US Drought Monitor Map for MA	4	NA	NA	NA	NA		
7	LANDSLIDE	MEMA	4	NA	NA	NA	NA		
TIER	EARTHQUAKE*	MEMA	✓	NA	NA	NA	NA		
_	WIND	MEMA	✓	NA	NA	NA	NA		

PHASE 2 - RISK AND VULNERABILITY ASSESSMENT (RVA)

Local Sea Level Rise Example Criteria Describing Consequence Public Safety, **Public** Reduced Repair Public Services; Health, **Economic** Score Emergency Cost Duration Activity Services **Environment** Regional Regional >\$20 Regional >1 Month MM Emergency Emergency Emergency City \$2 MM City Emergency 15-30 Days City Emergency Emergency \$20 MM \$200 K 3 High High High 7-14 days \$2 MM \$20K -Moderate Moderate Moderate 1-6 days \$200K Low Low <\$20K Low < 1 day Consequence Probability **Probability** Probability Weighted Risk Facility Score 2016 2041 2066 Score Reed Street Sewer Lift 64 0.01 0.01 0.1 2.37 Station **Predicted Flood Elevations** Threshold Elevation is El. 8.85 2066 100 yr storm 2041 100 yr storm El. 11.3 - 12.2 2016 100 yr storm El. 11.0 2066 10 yr storm Zone of Potential Storm Inundation 2066 sting 1% Probability Steen Surge

Risk Analysis

- Probability of climate impact versus severity of consequence
- High Vulnerability, High Risk Sites = High Priority

Vulnerability Mitigate Risk • Sea Level Rise & **CLIMATE CHANGE SCENARIOS** Storm Surge • Inland (determine sensitivity for Risk Precipitation each building system/user group) • Heat **ADAPTATION** from likelihood of event and **STRATEGIES** damage) *Consequence effect of failure of the building SITE/FACILITY • CAMIS **CHARACTERIZATION** Review of Existing (determine adaptive Information capacity within each Inspection building system/user Interview group)

	BU	ILDING	SYST	TEMS					
SITE FEATURE	OBSERVATIONS			CLIMATE PARAMETERS	PDAMAGESY	VUCMBRABILITY RATING	CONSEQUENCE RATING**	RBERATMO	
		YES	NO	COMMENTS					
PRE-EXISTING	Existing problems and/or concerns?		X						
ELECTRICAL	Substation below PFE?		X		FLOOD				
	Transformer below PFE?	X		Transformer at ~E1 12 located along bridge street (1)	FLOOD	4	High	4	High
	Temperature control around transformer?		X		HEAT	3	High	4	Hig1
	Switchgear below PFE?	X	X	~1 ft below	FLOOD	4	High	4	High
	Distribution panel below PFE?	X	X	~1 ft below	FLOOD	4	High	4	High
	Temperature control around distribution panel?	X		HVAC tem perature controlled	HEAT	2	Low	4	High
	Emergency generator below PFE?	X		Siee genera tor	FLOOD				
	Communications below PFE? List	X		Server room for trial courts	FLOOD	4	High	4	High
	Temperature control around communications?	X		All conduits insulated, temperature controlled (1)	HEAT	2	Low	4	High
	On-site renewable energy? List		X	No	WIND/WINTER STORM	1	Low	3	Low
MECHANICAL	Fuel tank below PFE?	x			FLOOD		\vdash	⊢	\vdash
See HV AC systems	Water heating equipm ent below PFE?	x			FLOOD	4	High	4	High
•	Air handling equipment below PFE?	X	х	Chillers, See HVAC section	FLOOD/WIND			\vdash	
	Sanitary system below PFE? (Sewer or Septic)	X		Sewer	FLOOD	4	High	4	High
	Temperature control for sprinkler system?		х	Not insulated	HEAT/WINTER STORM	2	Low	3	Low
	Water supply on-site? (well/storage tank)	X		Non-potable water, no potable water stored on site	FLOOD/DROUGHT/FIRE	2	Low	1	Low
	Redundancy between fire suppressant system?		X	Localized fire suppressant areas, no redundancy	FIRE			\Box	

NOTE: PFE - PREDICTED FLOOD ELEVATION

ADDITIONAL COMMENTS: (1) Pad he ight unknown- obscured by snow.

- * EXISTING CONDITION ABILITY TO WITHSTAND CLIMATE EVENT
- 1. EXCELLENT Very untikely to result in damage given the related climate parameter
- 2. GOOD Unlikely to result in damage given the related climate parameter
- 3. SATISFACTORY-May result in damage given the related climate parameter
- 4. FAIR Likely to result in damage given the related climate parameter
- 5. POOR Very like by to result in damage given the related climate parameter

- ** CONSEQUENCE TO PUBLIC HEALTH AND SAFETY, INTERDEPENDCIES, AND/OR COST OF DAMAGE
 - 1 Damage would result in low consequences (minor injuries and/or <\$5,000)
 - 2 Damage would result in moderate consequences (moderate injuries and/or <\$250,000)
 - 3. Dama ge would result in high consequences (severe injuries and/or < \$1,000,000)
 - $4. \ \, \text{Damage would result in very high consequences (possible loss of life and/or < \$10,000,000)}$
 - 5. Damage would result in a local or regional emergency to interdependent systems

SUMMARY OF FINDINGS

VULNERABLE FACILITY ELEMENT	LOCATION	CLIMATE	VULNERABILITY RANK	RISK RANK	
PATIENTS/TEMPERATURE CONTROL	OCCUPANCY	HEAT	High	High	
ROOFS	ALL (except replaced modular roof)	EXT. PRECIPITATION/WIND	High	High	
AIR HANDLING	HEALTH SERVICES	HEAT	High	High	
TRANSFORMERS	SUBGRADE VAULTS	EXT. PRECIPITATION	High	High	
ELECTRICAL & MECHANICAL ROOMS	DORMS/MAX.	EXT. PRECIPITATION	High	High	
ELECTRICAL & MECHANICAL ROOMS	ADMIN. BLDG.	EXT. PRECIPITATION	High	High	
SPRINKLER SYSTEM	ADMIN. BLDG.	FIRE	Low	High	
FENCES (non-reinforced)	EXTERIOR	WIND/WINTER STORM	High	Low	
LOUVERS FOR ELEC/MECHANICAL ROOMS	DORMS/MAX.	EXT. PRECIP	High	Low	
WINDOWS	ALL	HEAT	High	Low	
GENERATORS	OFF-STE	EXT. PRECIP/WINTER STORM/WIND	Low	High	
POTABLE WATER SUPPLY	OCCUPANCY	DROUGHT	Low	High	
TRANSFORMERS	ABOVE GROUND	HEAT/FLOOD	Low	Low	
POWER SUPPLY	ON-SITE POWER PLANT	HEAT	Low	Low	

PHASE 3 – DESIGN GUIDELINE DEVELOPMENT

Adaptation Planning

 PREPARE FOR CHRONIC AND ACUTE CLIMATE IMPACTS

• **RESIST** CLIMATE EVENT (HEATWAVE, STORM)

• **RECOVER** FROM CLIMATE EVENT (FLOODING, DAMAGES)

Adaptation/Resiliency Strategies: Grouped by Type of Action

Policy (DCAMM Standards)

Programmatic

Deferred Maintenance Request

0&M

Master Plan

Retreat

Remove CC sensitivity

Relocate on site

Relocate off-site

Elevate above PFE

Protect

Prevent CC impact

Flood Barriers

Backflow preventers/flood gates

Reinforce Windows/Wall

Accommodate

Allow CC impact, reduce damage

Increase drainage capacity

Green infrastructure

Wet floodproofing

Adaptation Criteria – C.E.F.T.A.C

Adaptation Strategies – Example

1		
		1
The second secon		

Image courtesy of PS Flood Barriers

VULNERABLE FACILITY ELEMENT	LOCATION	CLIMATE STRESS	PRIORITY
Basement doorways to	North side of site	Extreme	High
Outdoor Equipment Room,		Precipitation &	
Mechanical Room, etc.		Flooding	

- Planning Horizon: Before & During
- Strategy: Protect
- Cost \$ \$\$. Customized to openings
- **Effectiveness** Max: depends on structural strength of building walls and connections
- Feasibility Yes: easy to install, use, store and transport
- Adaptability Flexible: Adjust to water height
- Timing Short term: <1 hour installation
- Co-benefits No.

Image courtesy of Global Industrial

Final SRMP Document

DCAMM Statewide Resilience Master Plan

Project Number: DCP 1607 HS1

Project Name STATEWIDE RESILIENCE NASTER PLAN (SRMP)
Owner / Client: Massachusetts Division of Capital Asset Nanagement and Maintenance

In partnership with: Massachusetts Emergency Management Agency (MEMA)

DCAMM (Programming) Project Manager: Jeremy Caron

MEMA Contacts: Marybeth Groff, Serah White, Hazard Mitigation Planning (MEMA)

GUIDELINES BY BUILDING SYSTEM

GUIDELINES BY BUILDING SYSTEM

subcontractor, but equipment will not require replacement, so firming of implementation is expected to be short-term and cost is low in

Co-benefits: No

Connecticut SRMP

- The process is established!
- Use existing studies and expand on them
- Mapping can be expanded to CT-Statewide, COGs and Municipalities
- Update current data
- Select climate scenarios most applicable to state goals
- Prioritize assets based on criticality and run RVA
- Conduct workshops identify example adaptation strategies
- Prepare final guidelines for adaptation

COG Communities

Uconn CIRCA Resources

questions?

westonandsampson.com

thank you westonandsampson.com