USING A NOVEL METHOD TO MAP FLOOD SUSCEPTIBILITY OF THE LOWER CONNECTICUT RIVER REGION

Scott Choquette, Dewberry
Jason Giovannettone, Dewberry
Margot Burns, RiverCOG
Introduction

1. Identify flood risk factors that apply to the region of interest.
2. Correlate these flood risk factors to flood inundation during a particular event.
3. Use resulting relationships to produce a flood susceptibility map.
Introduction: Case Study

- Lower Connecticut River Valley Region (LCRVR)
- River Council of Governments (River COG)
Flood Risk Factors

<table>
<thead>
<tr>
<th>Flood Risk Factors</th>
<th>Source (year)</th>
<th>Resolution/Scale</th>
<th>URL for Data Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Cover (LAND)</td>
<td>USGS (2011)</td>
<td>30 meters</td>
<td>https://www.mrlc.gov/</td>
</tr>
<tr>
<td>Elevation (ELEV); Slope (SLOPE); Curvature (CURV)</td>
<td>USGS (2014; 2011)</td>
<td>30 meters</td>
<td>https://earthexplorer.usgs.gov/</td>
</tr>
<tr>
<td>Distance from Water (DIST)</td>
<td>DEEP (2005)</td>
<td>1:24,000</td>
<td>http://www.ct.gov/deep/cwp/view.asp?a=2698&q=322898&deepNav_GID=1707</td>
</tr>
<tr>
<td>Soil Drainage (SOIL)</td>
<td>USDA-NRCS (current)</td>
<td>varies</td>
<td>https://sdmdataaccess.nrcs.usda.gov/</td>
</tr>
<tr>
<td>Vegetation density (VEG)</td>
<td>USGS (2011)</td>
<td>30 meters</td>
<td>https://www.mrlc.gov/</td>
</tr>
<tr>
<td>Impervious Surface (IMP)</td>
<td>USGS (2011)</td>
<td>30 meters</td>
<td>https://www.mrlc.gov/</td>
</tr>
</tbody>
</table>
Flood Risk Factors (e.g. elevation, land use)
Select Flood Event(s)

- Satellite images could not be used:
 - Very poor quality over a 5 to 10 year period
 - Only available for events with < 25-year recurrence

- FEMA 100-year floodplain used

- Correlation between flood risk factors and flooding is what we want to obtain.

- Ideally 2 to 3 events would provide ability to interpolate.
Regionalization and Sampling Points

URBAN (U)

RURAL (R)

COASTAL (C)

FLOODED

non-FLOODED
Relative Contribution of each Factor

- Average magnitude of model coefficients for each sub-region.
 - **Elevation & distance to water** contribute most in coastal & urban sub-regions. **Land Cover** is a close third in the more urban sub-region.
 - **Surficial materials & distance to water** contribute most in rural sub-region.
Changes between Rural and Urban

- We are interested in how contribution changes due to urbanization.
- Difference between urban and rural contributions provides this info.
- **Elevation** and **Land Cover** experience the greatest change.
- Using logistic regression, the probability of inundation is obtained for every point in the “Area of Influence”, values are categorized according to the following:
 - **Very Low Risk**: 0 – 20%
 - **Low Risk**: 20 – 40%
 - **Medium Risk**: 40 – 60%
 - **High Risk**: 60 – 80%
 - **Very High Risk**: 80 – 100%
Comparison to FEMA Map (Urban)

• Large areas of susceptibility are not included in the FEMA map.
• It should be noted that the susceptibility map should not be used for regulatory or insurance purposes in place of the FEMA map, but is only a tool that can be used for planning purposes.
Summary

• Correlated several non-climatic flood risk factors to 100-year FEMA flood hazard area.

• Logistic regression showed that “Elevation” and “Distance to Water” contribute most to flood susceptibility in urban and coastal sub-regions.

• “Surficial Materials” and “Distance to Water” contribute most in rural sub-region.

• “Elevation” and “Land Use” show greatest increase between rural and urban sub-regions.

• Flood susceptibility map showed a wider area susceptible to flooding than FEMA flood map (though FEMA map should still be used for insurance purposes)