

USING A NOVEL METHOD TO MAP FLOOD SUSCEPTIBILITY OF THE LOWER CONNECTICUT RIVER REGION

5TH ANNUAL CONFERENCE BRIDGEPORT, CT OCTOBER 24, 2018 Scott Choquette, Dewberry Jason Giovannettone, Dewberry Margot Burns, RiverCOG

Introduction

- Identify flood risk factors that apply to the region of interest.
- Correlate these flood risk factors to flood inundation during a particular event.
- 3. Use resulting relationships to produce a flood susceptibility map.

Introduction: Case Study

Flood Risk Factors

Flood Risk Factors	Source (year)	Resolution/Scale	URL for Data Access
Land Cover (LAND)	USGS (2011)	30 meters	https://www.mrlc.gov/
Elevation (ELEV); Slope (SLOPE); Curvature (CURV)	USGS (2014; 2011)	30 meters	https://earthexplorer.usgs.gov/
Distance from Water (DIST)	DEEP (2005)	1:24,000	http://www.ct.gov/deep/cwp/view.asp?a =2698&q=322898&deepNav_GID=1707
Soil Drainage (SOIL)	USDA-NRCS (current)	varies	https://sdmdataaccess.nrcs.usda.gov/
Vegetation density (VEG)	USGS (2011)	30 meters	https://www.mrlc.gov/
Impervious Surface (IMP)	USGS (2011)	30 meters	https://www.mrlc.gov/
Surface Geology (GEO)	DEEP (2005)	1:24,000	http://www.ct.gov/deep/cwp/view.asp?a =2698&q=322898&deepNav GID=1707
FEMA 100-year Hazard Area	DHS/FEMA (2016)	1:12,000	https://catalog.data.gov/dataset/national-flood- hazard-layer-nfhl

Flood Risk Factors (e.g. elevation, land use)

Select Flood Event(s)

- Satellite images could not be used:
 - Very poor quality over a 5 to 10 year period
 - Only available for events with25-year recurrence
- FEMA 100-year floodplain used
- Correlation between flood risk factors and flooding is what we want to obtain.
- Ideally 2 to 3 events would provide ability to interpolate.

Regionalization and Sampling Points

Relative Contribution of each Factor

- Average magnitude of model coefficients for each sub-region.
- Elevation & distance
 to water contribute
 most in coastal &
 urban sub-regions.
 Land Cover is a
 close third in the
 more urban subregion.
- Surficial materials & distance to water contribute most in rural sub-region

Changes between Rural and Urban

- We are interested in how contribution changes due to urbanization.
- Difference between urban and rural contributions provides this info.
- Elevation and Land Cover experience the greatest change.

Flood Susceptibility Map

 Using logistic regression, the probability of inundation is obtained for every point in the "Area of Influence", values are categorized according to the following:

- **Very Low Risk**: 0 – 20%

- Low Risk: 20 – 40%

- **Medium Risk**: 40 – 60%

- **High Risk**: 60 – 80%

- Very High Risk: 80 -

100%

Comparison to FEMA Map (Urban)

- Large areas of susceptibility are not included in the FEMA map.
- It should be noted that the susceptibility map should not be used for regulatory or insurance purposes in place of the FEMA map, but is only a tool that can be used for planning purposes.

- Correlated several non-climatic flood risk factors to 100year FEMA flood hazard area.
- Logistic regression showed that "Elevation" and "Distance to Water" contribute most to flood susceptibility in urban and coastal sub-regions.
- "Surficial Materials" and "Distance to Water" contribute most in rural sub-region.
- "Elevation" and "Land Use" show greatest increase between rural and urban sub-regions.
- Flood susceptibility map showed a wider area susceptible to flooding than FEMA flood map (though FEMA map should still be used for insurance purposes)