

Bringing Flood Resiliency into MassDOT Asset Management

Presented by NOAH SLOVIN, CFM, Milone & MacBroom

CAFM Annual Conference & Meeting | October 30, 2019

ACKNOWLEDGEMENTS

<u>MassDOT Project Team</u>

Tim Dexter, MassDOT

Melissa Lenker, MassDOT

Jessica Louisos, Milone & MacBroom, Inc.

Jim MacBroom, Milone & MacBroom, Inc.

Katherine McArthur, MassDOT

Steve Miller, MassDOT

Jack Moran, MassDOT

Roy Schiff, Milone & MacBroom, Inc.

Noah Slovin, Milone & MacBroom, Inc.

FHWA Project Team

Brian Beucler, FHWA

Cassandra Bhat, ICF International, Inc.

Jason Dvelis, FHWA

Gina Filosa, Volpe

Samantha Heitsch, ICF International, Inc.

Robert Kafalenos, FHWA

Sheila Masters, FHWA

Shobna Varma, StarIsis Corporation

FHWA Asset Management, Extreme Weather, and Proxy Indicators Pilot Project

PROJECT SCOPE

PROJECT SCOPE

Item	Amount	Notes		
Major basins	8	From NHDPlus HR, USGS Hydrologic Unit Code 4 (HUC-4)		
Watersheds	20	From NHDPlus HR, HUC-8		
Stream channels	16,704 miles	From the NHDPlus-HR. Excludes intermittent streams. Includes stream orders 1		
		through 8.		
State Roads	4,443 miles	Approximated from GIS.		
State Culverts	1,171	State-owned structures from the MassDOT Culvert Database. Excludes culverts not on		
		a mapped stream channel or that do not have a known width.		
State Bridges	2,787	NBI and short-span bridges in the MassDOT Bridges Database owned by the state		
		municipality. Excludes coastal bridges.		

- MassDOT Road Inventory (MassDOT, 2018b): 55,977 miles of roads. The average road segment length is 0.1 miles.
- National Hydrography Dataset High-Resolution (NHDPlus HR) (USGS, 2018): 16,704 miles of GIS stream centerline segments. The average channel segment length is 0.2 miles.
- The MassDOT Culvert Database: 5,582 culverts. Focus on 1,171 culverts on perennial streams.
- The MassDOT Bridge Database: 3,120 structures. Focus on 2,787 bridges on perennial streams.

GEOMORPHIC COMPATIBILITY

Percent-Bankfull Channel Width =

Structure Width (W_{structure})

Bankfull Channel Width (W_{bankfull})

- Percent Bankfull as a proxy indicator for Geomorphic Compatibility
- Damages tend to occur structures that do not span the bankfull width

GEOMORPHIC COMPATIBILITY

Percent-Bankfull Channel Width =

Structure Width (W_{structure})

Bankfull Channel Width (W_{bankfull})

 $W_{bankfull} = 15.0418 \times Drainage area^{0.4038}$

(Bent and Waite, 2013)

GEOMORPHIC COMPATIBILITY

Percent Bankfull Width	Estimated Geomorphic Compatibility
0 – 49%	Low
50 – 100%	Moderate
> 100%	High

(AR and MADER, 2016)

POTENTIAL CHANNEL BED EROSION

POTENTIAL CHANNEL BED EROSION

$$\begin{tabular}{lll} Weight of Water & χ \\ \begin{tabular}{lll} X \\ \begin{tabular}{lll} Specific Stream Power (SSP) = & Flow & (Bagnold, 1966) \\ χ \\ \end{tabular}$$
 Channel Slope

Potential geomorphic work to a unit area of the channel bed.

POTENTIAL CHANNEL BED EROSION

$$Q_{2}(ft^{3}/s)$$
=
$$1.631$$
+
$$0.801 \times log_{10}(\textbf{Area} \ [mi^{2}])$$
+
$$0.00589 \times (\textbf{Elev} \ [m])$$
-
$$0.01137 \times (\textbf{Storage} \ [\%])$$

POTENTIAL CHANNEL BED EROSION

POTENTIAL CHANNEL BED EROSION

"...balance between stream power and the bed resistance created by the sediment load and size" - Lane, 1955; Rosgen and Silvey, 1996; FISRWG, 1998

(USGS, 1999)

SCORING

Potential Channel Erosion Vulnerability

	0-29	Low	Low	Low
	30-59	Moderate	Moderate	Low
Estimated Specific Stream	60-99	High	Moderate	Low
	100-199	High	High	Moderate
Power (W/m²)	200-299	High	High	Moderate
	300-599	High	High	Moderate
and the second second	600+	High	High	High
Predicted Bed Resistance		Low	Moderate	High

Estimated Structure Vulnerability

		Estimated Structure Geomorphic Compatibility		
		Low	Moderate	High
		(% _{Wbankfull} < 50)		(% _{Wbankfull} ≥ 100)
Potential Channel Erosion Vulnerability (SSP and Bed Resistance)	High	Н	Н	М
	Moderate	Н	М	L
	Low	М	L	L

ESTIMATED STRUCTURE GEOMORPHIC COMPATIBILITY

POTENTIAL CHANNEL EROSION VULNERABILITY

ESTIMATED CULVERT AND BRIDGE VULNERABILITY

ESTIMATED CULVERT VULNERABILITY

ESTIMATED BRIDGE VULNERABILITY

CLIMATE CHANGE

Resilient MA Climate Change Data Clearing House

Downscaled Massachusetts Projections for Consistent Planning

Mean annual precipitation increase 5 - 10% over next 50 years. The projected increase applied to estimates of bankfull discharge.

RESULTS CLIMATE CHANGE IMPACTS **Predicted Increase in Culvert Vulnerability** Moderate High Low 3 Culverts Predicted Increase in Bridge Vulnerability Moderate High Low 39 Bridges

CLIMATE CHANGE IMPACTS

CONCLUSIONS

- Most MassDOT culverts have low geomorphic compatibility
- ¼ of channels have mod high channel erosion vulnerability
- Most culverts have mod high estimated vulnerability
- Most bridges have low mod estimated vulnerability
- Vulnerable structures are spread across the state
- Estimated vulnerability will increase across state with climate change
- Culverts are of particular concern since less is known about location, size, condition, and geomorphic compatibility as compared to bridges.

NEXT STEPS

- 1. Validate results of vulnerability screen with data from districts
- 2. Validate results of screen with field inspections at high-vulnerability crossings
- 3. Import results into GeoDOT to create online GIS maps
- 4. Add results of screen to MaPIT to improve project development and design
- 5. Complete development of the MassDOT Culvert Database
- 6. Coordinate with FHWA on culvert replacement and improvement program
- 7. Apply screen to culverts added to MassDOT Culvert Database in the future