2020 Annual Conference

Improving Community Resiliency through Salt Marsh Elevation Enhancement

Presented by

Nils Wiberg, PE, CFM

Presentation Overview

Statewide Strategies to Improve Salt Marsh Resiliency in RI

- Salt Marsh Elevation
 Enhancement Case Studies
 - 2016/17 Ninigret Pond (Charlestown)
 - 2016/17 Narrow River (Narragansett)
 - 2018/19 Quonochontaug Pond (Charlestown/Westerly)

EUSS&O'NEILL

Sea Level Affecting Marshes Model Results and Intervention Options

Connecticut Association of Flood Managers – December 9, 2020

(83% CI)

(83% CI)

(83% CI)

(83% CI)

based on "high curve"

2013 South Shore Habitat and Community Resilience Project

- Focused on Rhode Island Southern Coastal Salt Ponds and **Back-Barrier Marshes**
- Planning, Design, and Implementation of Dredging and Salt Marsh Restoration at Ninigret Pond and Quonochontaug Pond
- Permitting and Design for **Dredging and Restoration at** Winnapaug Pond –
 - **Eel Grass Restoration**
 - Potential Future Salt Marsh Restoration

PUSS&O'NEILI

Ninigret Pond Salt Marsh Restoration Charlestown, RI

Project Site - Ninigret Pond

- Back-Barrier Marsh Adjacent to Manmade Breachway, State-owned Public Access Point, Beach, and Campground
- Adjacent to National Wildlife Refuge
- Microtidal Salt Marsh Habitat Exhibiting Areas of <u>Prolonged Flooding</u>, <u>Vegetative Die-off</u>, <u>Subsidence</u>, and <u>Marsh Edge Erosion</u>

Connecticut Association of Flood Managers – December 9, 2020

No marsh elevation capital

Expanding dead areas

FUSS&O'NEFLI

Observed Impacts to Ninigret Salt Marsh

- Vegetation Die-off
- Shallow Ponded Areas with Algal mats
- Loss of High Marsh Species

Project Goals - Ninigret Salt Marsh

- Dredge Breachway Channel Improve **Tidal Flushing and Boat Safety**
- Place Dredged Material to Increase Salt Marsh Surface Elevations to Improve Resilience to Sea Level Rise

- Habitat for Fish & Birds

Connecticut Association of Flood Managers – December 9, 2020

Increase High Marsh Dominance -**Create Mosaic of Habitat Types** Protect/Enhance Salt Marsh

PUSS&O'NEILI

Challenges

- Uncharted Territory for New England Permit Team
- Addressing Needs and Expectations of Local Partners While Meeting Project Deliverables
- Time-of-Year Restrictions (for Dredging and Placement)
- Limited Local Pool of Expertise / Equipment
- Multiple Projects in Rhode Island Pipeline

Ninigret Salt Marsh Project Costs

Approx. 68,000 cy Dredged Material to Restore Approximately 20 Acres of Marsh

- Design, Engineering, and Permitting:
- Construction
 - Mobilization / Demobilization:
 - Dredging, Spreading, and Grading of Material:
 - Alternate Dredging:
- Planting:
- TOTAL:

\$110,453

\$334,400 \$543,900 \$530,812 \$100,000 \$1,619,565

Data Collection Goals - Ninigret Salt Marsh

Data Collection Goals

- Create and Restore Marsh at Target
 Elevation for Key Vegetative Species
 (saltmeadow cordgrass, blackgrass, seashore
 saltgrass, high-tide bush)
 - Determine Target Elevation Based on Existing Vegetative Communities
 - Evaluate Existing Sediment Condition to Assess
 Potential for Settling from Added Weight of New Material

Vegetation Analysis - Ninigret Salt Marsh

Vegetation Data Paired with RTK Elevation Data to Determine Target Elevations

Fill Elevations and Grading - Ninigret Salt Marsh

- Set Maximum Target Elevation at Elevation 1.2 ft NAVD88
 - Compaction
 - Sea Level Rise
 - 20% Contingency Volume
- Grading / Runnels for Drainage
- Historic Creeks and Pools to Remain

FUSS&O'NEILL

Fusing Discharge Piping and Staging Equipment

Hydraulic Dredge Equipment

Connecticut Association of Flood Managers – December 9, 2020

EUSS&O'NEEL

Hydraulic Placement of Dredged Sediment

Connecticut Association of Flood Managers – December 9, 2020

FUSS&O'NEILL

Hydraulic Placement of Dredged Sediment

Connecticut Association of Flood Managers – December 9, 2020

EUSS&O'NEEL

Placing Excess Sediment as Beach Nourishment

Connecticut Association of Flood Managers – December 9, 2020

FUSS&O'NEILL

Monitoring and Adaptive Management

- Pre- and Post-restoration Parameters
- Coordinated with Save The Bay, Saltmarsh Habitat and Avian Restoration Program, EPA Atlantic Ecology Division, and USFWS
- BACI (Before-After Control-Impact) Monitoring Plan Design
- Reference Site at Adjacent
 National Wildlife Refuge

Post Sediment Placement Planting

- Coordination with New England Wild Flower Society to **Collect Native Seed**
- Planting Design and Implementation by Save The Bay

Managing Migration of Placed Sediment

Vegetated buffers used for sediment control of sand; if finer sediment, increase the buffer size

Narrow buffers were covered by sand movement post sediment placement

Connecticut Association of Flood Managers – December 9, 2020

Planted beach grass as temporary sand stabilization for higher elevation

Re-Establish Hydrology

Plant Recolonization

Salt Marsh Plantings 2017-18

- Salt marsh planting: 2017-2018
- 186 volunteers: 750 hours
- 46,850 plants

Post-restoration Planting

Connecticut Association of Flood Managers – December 9, 2020

EUSS&O'NEEL

Plant Recolonization

Connecticut Association of Flood Managers – December 9, 2020

Post Placement May 2017

FUSS&O'NEILL

Plant Recolonization – August 2018

Connecticut Association of Flood Managers – December 9, 2020

FUSS&O'NEHL

Connecticut Association of Flood Managers – December 9, 2020

FUSS&O'NEHJ.

Post-Restoration Revegetation

2018 Post Impact Plant Communities

Impounded water along edge of sediment placement

Regrading sediment to tie into existing elevations

Connecticut Association of Flood Managers – December 9, 2020

EGSS&O'NEEL

Depression holding freshwater after rain event

Hand dug runnel spring 2018

Provide drainage for precipitation in higher elevation areas

Hand dug runnels to drain depressions

Connecticut Association of Flood Managers – December 9, 2020

FUSS&O'NEILL

Quicksand conditions at edge of marsh sill

Marsh sills impound surface and groundwater

Connecticut Association of Flood Managers – December 9, 2020

Groundwater draining once creek cut through marsh sill

Create drainage through marsh sills

FUSS&O'NEHJ.

Manage invasives at higher elevation areas

Actively weed invasives during the first 3 growing seasons if feasible

August 2017

Plant creek edges to stabilize banks

Connecticut Association of Flood Managers – December 9, 2020

banks

Connecticut Association of Flood Managers – December 9, 2020

corridors

Plan for predation

- Sediment and marsh type should dictate approach
- Begin permitting conversations early and often
- Low ground pressure equipment a must
- Grade to drain
- Sand moves!
- Incorporate drainage in design phase for tidal exchange and surface and ground flow
- Provide for immediate and long-term adaptive management to hydrology, management of invasive species)
- Manage partner expectations for design and outcomes

Monitoring

- Coordination with CRMC, Save The Bay, SHARP program, NBNERR, RINHS, EPA AED and USFWS
- BACI design, reference site at adjacent National Wildlife Refuge
- Time frame at least 5 years
- **Parameters:**
 - Elevation
 - Vegetation (above and belowground biomass)
 - Water levels
 - Salinity
 - Accretion rates
 - Nekton
 - Avian surveys
 - Photo stations ____

Narrow River Salt Marsh Restoration Narragansett, RI

Narrow River Sediment Placement

Sediment Geochemistry and Gradation Issues

Narrow River Sediment Placement

Connecticut Association of Flood Managers – December 9, 2020

Limited Intervention

EUSS&O'NEHL

Narrow River Sediment Placement

Connecticut Association of Flood Managers – December 9, 2020

FUSS&O'NEILL

Narrow River Revegetation

Narrow River Revegetation

Connecticut Association of Flood Managers – December 9, 2020

FUSS&O'NEHLI.

Narrow River Revegetation

Connecticut Association of Flood Managers – December 9, 2020

EUSS&O'NEEL

Quonochontaug Pond Salt Marsh Restoration Charlestown, RI

Connecticut Association of Flood Managers – December 9, 2020

PUSS & O'NEILI.

Quonochontaug Pond Project Goals and Approach

LEGEND ELEVATION INCHES (NAVD88)

> -5.9" - -4" -3.9" - -2" -1.9" - 0" 0" - 2"

2.1' - 4" $4.1^{\circ} - 5"$ $6.1^{\circ} - 8"$ $8.1^{\circ} - 10"$ 10.1'' - 12"> 12"

SALT MARSH RESTORATION AREA

- Revised per Lessons Learned
- Eelgrass Restoration Areas

Quonochontaug Pond – Vegetative Assessment

Quonochontaug Pond Restoration Design

Connecticut Association of Flood Managers – December 9, 2020

EUSS&O'NEEL

Quonochontaug Pond Implementation

Connecticut Association of Flood Managers – December 9, 2020

FUSS&O'NEILL

Quonochontaug Pond Sediment Placement (2019)

Lessons Learned Recap

- Sediment and marsh type should dictate approach
- Begin permitting conversations early and often
- Low ground pressure equipment a must
- Grade to drain
- Sand moves!
- Incorporate drainage in design phase for tidal exchange and surface and ground flow
- Provide for immediate and long-term adaptive management to hydrology, management of invasive species)
- Manage partner expectations for design and outcomes

Questions?

Nils Wiberg, PE, CFM Associate | Chief Water Resources Engineer <u>nwiberg@fando.com</u>

