
Leveraging AI-Assisted Scripting

For HEC-RAS and HEC-HMS Automation

William Katzenmeyer, P.E., C.F.M. 

Senior Water Resources Technical Lead

C.H. Fenstermaker and Associates, LLC

CAFM 2024 Conference

Wednesday November 13, 2024

2:15PM – 2:45PM

An Exploration of the Development of HEC-Commander Tools



Outline

1. HEC-Commander Tools Intro     Where’s the AI? 

2. Why Parallelize  Benchmarking HEC-RAS Core Scaling

• HEC-RAS 2D CPU Core Scaling

• Platform Comparisons: Cloud, Laptop, Workstation and HPC

• Parallelization in Practice

3. Best Practices for AI-Assisted Python Scripting

• Code-Forward Approach

• Notebook-style, Code Cell Level Modularity

• AI Automated Environment and Dependency Setup

4. AI-Assisted Coding: Lowering Barrier to Entry for Modeling Workflows

5. Prompting Examples and Strategies

6. Coming Soon: RAS Commander Library and AI Assistant

William Katzenmeyer 

Linkedin

HEC-Commander

Repository (GitHub)



RAS-Commander
Parallelizing HEC-RAS 

In a Jupyter Notebook

AI-Coded Jupyter Notebook Supporting:
• Parallel HEC-RAS Execution

• Windows Native: Supports All Versions

• Leverage Multiple Workstations in Parallel

• Open Source, MIT License

Basic Components
• User Input and Settings

• New! Tkinter GUI

• File Deploy and Copy

• Batch File Creation

• Command Line Execution

• Results Collection

Flexible Operation:
• Bring Your Own Project

• Create Plans from HMS DSS Input Files

• Optional 2D Infiltration Overrides

RAS-Commander is ready for AI-Assisted editing to 

support your bespoke applications.



HMS-Commander

AI-Coded Jupyter Notebook Supporting

• Subbasin Parameter Editing

• DSS Output File Renaming

• Impervious Grid Scaling > 1.0

• Calibration Regions by shapefile

• CSV File Input 

• Enables Linked HMS>RAS Calibration Workflows

• Modular Script Ready for AI-Editing for Bespoke Applications
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Example CSV Input used for HMS-Commander and RAS-Commander 2D Infiltration Overrides:



Where’s the AI?
A few clarifications on how we are using AI:

• AI is not operating the model

• AI isn’t making decisions or optimizing anything directly

Here is the secret sauce:

1. AI was used to write python code into notebooks, starting from plain 
language descriptions. 

2. AI was also used to explain code segments it had written, to better teach me 
how to direct it with English commands to create the desired code output 
and functionality

3. As someone with very little prior python experience, I was able to generate 
useful code and innovative workflows that immediately unlocked innovations 
that were previously unreachable.

The most powerful capability of Large Language Model is the ability 
to speak multiple languages fluently.  Especially deterministic 

languages like code.  



2D HEC-RAS Performance Scaling
Fenstermaker Local Compute Cluster:   Benchmarking Insights

Unit Runtime 

To simplify comparisons

Best Value = 

0.31 @ 8 cores

Scaling is linear with clock speed, but efficiency drops significantly 
beyond 2 cores

**HEC-RAS 2025 will eventually feature GPU acceleration and 
explicit solution schemes that scale more linearly with core count**



Comparison: Local Compute vs Best Public Cloud

Chipset/Generation: 

Intel Alder Lake

Server-class architectures do 

not have “performance” and 

“efficiency” cores and can 

scale up to 16 cores on AWS 

C6i.  Larger instances hurt 

performance.

Cloud-scale architectures do successfully scale beyond 8 cores, but have similar efficiency characteristics

Cloud instances are relatively cheap, but utilizing it effectively is needlessly complex.  Local 



Optimize CPU Settings
Disable Hyperthreading Disable “Efficiency” cores Install Intel XTU Tuning

Take the free 10%



All Results are Recorded on the HEC-Commander GitHub Repo

• Benchmarking results as CSV

• Markdown files containing datasets and plots

• Includes AI-generated python code

Drag-Drop this file into your favorite LLM, tell it your CPU and ask it for upgrade options

Composite Benchmarking Results

Source Blog Post: 

Benchmarking is All You Need



Parallelization In Practice 
Giving 70% to Gain 70% 

For an assumed 1 day runtime at 1 core

2 Cores = 0.55 days

8 cores = 0.31 days

Without parallelization, running at 2 cores 

is around 77% slower

With Parallelization utilizing all 8 cores

3 run batches @ 2 cores = 0.55 Days

3 runs at 8 cores = 0.93 days

With parallelization, batched runs sets are 72% faster w/same CPU by maximizing efficiency



But How Do We Parallelize

HECRASController

• Lack of Documentation

• Limited to COM32 Interface

• No RASMapper Automation

• No Parallel Execution

Market Solutions

• All Built on Linux/Cloud

• No access to latest versions

• Proprietary

• Not Free

• Data Transfer Bottlenecks

A Better Solution was Needed

So I coded it myself with AI



Case Study: West Fork Calcasieu Model 
Region 4, Louisiana Watershed Initiative

Leveraging and order of magnitude more compute and data allowed innovative calibration 
and validation approaches with more deterministic results.

Revisiting The Bitter Lesson:

“Breakthrough progress eventually 

arrives by an opposing approach based 

on scaling computation by search and 

learning”

R.H. Sutton

The future is parallelization!  You can 

implement your own innovative tools 

today with lower barriers to entry than 

ever before by leveraging LLM’s.



Stacking Gains
Avoiding Public Cloud:  35% to 240% gains

• Depending on instance, provider

• Linux instances consistently performed ~15% faster than Windows

Maximizing Single Core Performance for Model Development 
• Disabling Hyperthreading: +10%

• Disabling Efficiency Cores:  Avoiding 5-25% Performance Penalty

Maximizing Efficiency w/Batched Calibration/Validation, Parallelization
• Compute batches 70% faster on single machine

• Additional Linear Scaling through Remote Execution (+100% Per Machine)

• Roughness: ~50 runs, HMS Sensitivity/Calibration 96 Runs per set

• Tested with 12 total compute nodes, 48 parallel runs

We will come back to this again in the Case Study at the end of the presentation.

From                            to 

Blog Post:        
From 10x to 0.25x 
By the Numbers



Back to AI: 
What does the Future Look Like?

• Innovative new tools developed even closer to the technical experts

• Drastically lowered barriers to writing and executing code

• More automated data analysis methods

• Less technical drudgery

• More focus on higher-level planning and thinking

• Ability to quickly innovate around commercial software limitations



AI-Assisted Python Scripting:

3 Basic Levels of AI Interaction with Python Code:

Each level of interaction drastically shortens the learning curve into the next.

ChatGPT’s Code Interpreter is a wrapper for a Jupyter server with a sandboxed Python 
Environment.  This generates a plethora of training data, making Python the most efficient 
language that GPT is most proficient at utilizing.  By observing the python code generated 
in code interpreter, the user becomes familiar with the libraries and methods utilized by 
code interpreter, and becomes better able to direct the AI to create the desired output. 



AI-Assisted Python Scripting:

Lowering Barriers to Increase Adoption

AI can assist beginner users with: 

- Utilizing code autonomously with Code Interpreter

- Explaining Code Segments

- Step by step instructions on Development Environment Setup

- Assembling bespoke workflows from natural language

- Utilizing a vast array of open source python packages

This drastically lowers barriers to adoption and utilization python code, 
and opens a new frontier of development of innovative software tools.



Emerging Use Cases of Large Language Models

Let’s explore what you can do at 
the first level of interaction: 

• Intelligent Voice Notes and Dictations

• Office Application Assistant
“Help me with VBA Scripting in Excel”

• Expert Software Assistants
“Write a QGIS script to do this”

• Powerful Agentic Calculations
“Fit a log-normal distribution to the data and 
calculate return periods”

Code Interpreter can handle:
• Basic GIS Operations
• Sort/Filter/Display Datasets.
• Create Charts and Graphs 
• Assemble simple code operations to solve 

problems Excel can’t solve.
• Input/Output files up to ~1GB



Prompt Improvement Pipeline

As tasks are repeated, a prompt 
improvement pipeline approach can be 
adopted

Each task is an opportunity to improve the 
prompt and add or remove parameters.

Automating small tasks, then larger tasks, 
and eventually outgrowing the capabilities 
of the web interface is the point. 

Process Diagram Source



“Prompt Engineering”

The most impactful tips and tricks for improving 
your prompts generally revolve around providing 
the AI custom instructions and context:

When prompting an LLM, focus on:

• Providing clear, well-structured directions

• Use Delineators to Separate Instructions from Context

• Understand the Limitations:

• Limited Context Windows

• Limited Retrieval from Large Documents

• Probabilistic Operation, not Deterministic

• File size and library limitations in Code Interpreter

• No internet access (blame the AI safety patrol)

Be ready to Iterate, Iterate, Iterate!

Basic “prompt engineering” is typically:

• Role (Persona)

• Constraints

• Contextual Data

• Instructions

• Desired Output

• Examples

Prompts can also be structured as code

Your AI Assistant doesn't know what it's doing here, unless you tell it



AI-Assisted Python Scripting for Beginners:

Notebook Based, Code-Forward Approach
GPT can just as easily write a script for you to execute locally.  Since the 
backend for Code interpreter is a Jupyter Notebook, the format suddenly 
became very useful for small to medium complexity scripts due to the ability to 
have robust AI assistance.  

By starting with small, useful operations that execute flawlessly within the code 
interpreter environment, non-coding users can begin chaining simple 
functionalities together within a local notebook, then iterating with GPT to 
achieve their workflow automation.  



Have Reasonable Expectations

At even a 88% accuracy rate, chained operations will still exhibit high probability of 

errors and hallucinations. The “regenerate” button is still your friend!  

Iterating is an integral part of using LLM’s.



But Wait
There’s More



RAS Commander Library 
Scheduled for Release: Q1 2025

• Automation Library for HEC-RAS using Python
• Version 6.x supported

• HEC-RAS 2025 Support with API Documentation Release

• Built with Large Language Models

• Integrated AI Tools
• Context Window Driven Modularity

• Cursor Rules and GPT Instructions

• Knowledge Bases

• AI Library Assistant

• GPT with ability to load and visualize HEC-RAS data

• Goals: 
• Data Accessibility

• Enabling Deeper Data Analysis

• Agentic Research Assistance

• Functional Replacement for HECRASController

• Embracing the Future with Large Language Model-driven Code



RAS-Commander Library Features

• Access All HDF 
Datasets as 
Pandas and 
GeoPandas
Dataframes

• Common 
Automation/ 
Execution

• Functional 
Replacement for 
HECRASController



1D HDF Data Extraction



1D HDF Data Extraction



2D HDF Data Extraction



2D HDF Data Extraction



Enabling Novel Data Analysis and Research

• Discharge-weighted average velocity is not readily available in HEC-
RAS.  Reference lines are used to extract summary results along 2D 
profile lines, but do not currently support the calculation of 
discharge-weighted average velocity. 

• This is an important limitation on 2D sediment transport modeling

• One of the use cases that will be published with the library is the use 
the results arrays to directly calculate discharge-weighted average 
velocity using a user-drawn profile line which can be placed after 
results are calculated (unlike reference points and lines). 





Pipes and Conduits Data Extraction



AI Library Assistant

• Bring your own API Keys

• Repo Explorer

Roadmap:

• RAG Mode (coming soon)

• Agentic Code Execution 
(coming soon)



RAS-Commander GPT

• Limited by OpenAI’s GPT 
framework, but still a novel way 
of interacting with the library
• Load Small Projects with Code 

Interpreter

• Visualize Results and Perform Data 
Analysis

• Ask General Questions

• Short Context is Best for Now 

Ask for Early Access to the RAS 
Commander Repository or wait for 

Public Release in Q1 2025



Blogs

ChatGPT Examples and GPT’s

Miscellaneous H&H Tools related to LWI Region 4 Efforts

HEC-Commander Repository
Open Source Notebooks:

HEC-Commander

Repository (GitHub)


