_everaging Al-Assisted Scripting
For HEC-RAS and HEC-HMS Automation

An Exploration of the Development of HEC-Commander Tools

William Katzenmeyer, P.E., C.F.M.

=N \ Senior Water Resources Technical Lead
53 ,

\ C.H. Fenstermaker and Associates, LLC

om =

FENSTERMAKER

CAFM 2024 Conference
Wednesday November 13, 2024
2:15PM - 2:45PM

Outline

1. HEC-Commander Tools Intro = Where’s the Al?

2. Why Parallelize - Benchmarking HEC-RAS Core Scaling
 HEC-RAS 2D CPU Core Scaling
* Platform Comparisons: Cloud, Laptop, Workstation and HPC
* Parallelization in Practice

3. Best Practices for Al-Assisted Python Scripting
e Code-Forward Approach
* Notebook-style, Code Cell Level Modularity
* Al Automated Environment and Dependency Setup

4. Al-Assisted Coding: Lowering Barrier to Entry for Modeling Workflows

5. Prompting Examples and Strategies

6. Coming Soon: RAS Commander Library and Al Assistant

%ﬁﬁlﬂ
Eﬂ%

William Katzenmeyer
Linkedin

HEC-Commander
Repository (GitHub)

Al-Coded Jupyter Notebook Supporting:
* Parallel HEC-RAS Execution

* Windows Native: Supports All Versions

* Leverage Multiple Workstations in Parallel
* Open Source, MIT License

RAS-Commander /N2

&3

=-RAS="

COMMANDER

Parallelizing HEC-RAS
In a Jupyter Notebook

Basic Components
e User Input and Settings

§ Ras-Commander 1.0

¥ Cillocal PathiTemp_May_2D ' WNetwarkName 1\ Temp\Temp_May_2D

:
)
e New! Tkinter GUI - o I

* File Deploy and Copy

I \HetworkName 2\ Ternp\Termp_May_2D
¥ WNetworkNamed\TernpiTernp_May_2D

¥ N\NetworkName6\TempiTermp_May_2D

¥ \\Networkharme3\TempTemp_May 2D
¥ \\NetwarkMarmeS\Ternp\Termp_May_2D

¥ \\NetworkName \TempiTemp_May_2D

 Batch File Creation
e Command Line Execution
* Results Collection

In Build From DSS Mode, the HECRAS Project Folder will be overwritten

HECRAS Project Folder: ~|C:\Your_HECRAS Project Folder

Flexible Operation:
* Bring Your Own Project

* Create Plans from HMS DSS Input Files . et
* Optional 2D Infiltration Overrides

HECRAS Ternplate Folder: [CAYour HECRAS Template Folder
Plan Mumber: [0z
DSS Source Folder: [C:\Your_ HECHMS_Output_DSS_Folder_ar RAS_ 1D Output Folder

Infiltration From R&SMapper CSV: [P ath_To_Vour\Example_Infif
User Calibration Runs CSV Fullpath: |ex\Path_Ta_YourExarmple_Use

In Build From DSS Mode, the HECRAS Project Folder will be overwritten

RAS-Commander is ready for Al-Assisted editing to
support your bespoke applications.

Run HEC-RAS
In Parallel

HMS-Commander

Al-Coded Jupyter Notebook Supporting
* Subbasin Parameter Editing ——

s

—

—_

e DSS Output File Renaming
* Impervious Grid Scaling > 1.0

Calibration Regions by shapefile

CSV File Input

Enables Linked HMS>RAS Calibration Workflows
* Modular Script Ready for Al-Editing for Bespoke Applications

Example CSV Input used for HMS-Commander and RAS-Commander 2D Infiltration Overrides:

user_run_ N N threshold_ time_of_ storage_
initial_ maximum_ percolation_ impervious_ recession_ initial_flow_ - .
number_ - .. . flow_to_ concentration coefficient_
deficit_scale deficit_scale rate_scale area_scale factor area_ratio -
from_csv peak_ratio _scale scale
1 1.0 1 0.06 1 0.1 1 0.1 1 1

2 0.9 1 0.06 1 0.1 1 0.1 1 1

Where’s the Al?

A few clarifications on how we are using Al:
* Al is not operating the model
* Al isn’t making decisions or optimizing anything directly

Here is the secret sauce:

1. Al was used to write python code into notebooks, starting from plain
language descriptions.

2. Alwas also used to explain code segments it had written, to better teach me
how to direct it with English commands to create the desired code output
and functionality

3. Assomeone with very little prior python experience, | was able to generate
useful code and innovative workflows that immediately unlocked innovations
that were previously unreachable.

The most powerlful capability of Large Language Model is the ability
to speak multiple languages fluently. Especially deterministic
anguages like code.

2D HEC-RAS Performance Scaling

Fenstermaker Local Compute Cluster: Benchmarking Insights

FM Compute Cluster

Unit Ru ntime Unit Runtime vs Cores CPU Efficiency vs Cores
To simplify comparisons

Best Value =
0.31 @ 8 cores

Scaling is linear with clock speed, but efficiency drops significantly
beyond 2 cores

**HEC-RAS 2025 will eventually feature GPU acceleration and
explicit solution schemes that scale more linearly with core count**

Comparison: Local Compute vs Best Public Cloud

“efficiency” cores and can 10}

Unit Runtime vs Cores CPU Efficiency vs Cores
—e— Alder Lake Windows Workstation —e— Alder Lake Windows Workstation
. . 1.4 —e— AWS C6i Linux Solver 251 —e— AWS C6i Linux Solver
Chipset/Generation:

Intel Alder Lake 12} 5

G 20¢
. € 10| :ugj

Server-class architecturesdo £ > 15|
& 2
not have “performance” and £ s} g
> 5
2
S

0.6
scale up to 16 cores on AWS
C6i. Larger instances hurt o4l 5
performance' 0 5 10 15 20 2|5 0 5 10 15 20 25
Cores Cores

Cloud-scale architectures do successfully scale beyond 8 cores, but have similar efficiency characteristics

Cloud instances are relatively cheap, but utilizing it effectively is needlessly complex. Local

Optimize CPU Settings

Disable Hyperthreading Disable “Efficiency” cores Install Intel XTU Tuning
Unit Runtime vs Cores CPU Efficiency vs Cores
—o— Alder Lake Windows Workstation —e— Alder Lake Windows Workstation
1.4} —e— Alder Lake Windows Workstation Optimized —e— Alder Lake Windows Workstation Optimized
—e— AWS C6i Linux Solver 251 —e— AWS C6i Linux Solver
1.2 E
G 20
o b=
£ 1.0} S
=]
& o151
£ oe :
- =
(i}
0 6 | E 10 B
’ @]
0.4 St
0 5 10 15 20 25 0 5 10 15 20 25
Cores Cores

Take the free 10%

Composite Benchmarking Results

Machine Performance by Core Count

Machine Name
AWS c5a.8xlarge (AMD EPYC 7R32) (Linux Solver)
AWS c6i.24xlarge (Intel Ice Lake Xeon Platinum 8375C) (Linux Solver)
AWS c6i.8xlarge (Intel Ice Lake Xeon Platinum 8375C) (Linux Solver)
AWS c6i.8xlarge (Intel Ice Lake Xeon Platinum 8375C) (Windows Instance)
Dell Precision 7920 Tower (Intel Xeon Gold 6246R CPU, 3.40 GHz, 192 GB Ram)
Dell Rack Machine (AMD 16 core x 2, 3.49GHz, 64GB RAM)
Dell Rack Machine (Hyper V AMD, 10 vCPU, 3.49GHz, 16GB RAM, 128 GB drive)
Fenstermaker HPC (12th Gen i9-12900K 64 GB) (Cloud Test Environment)
Fenstermaker HPC (12th Gen i9-12900K 64 GB) (Hardware Defaults)
Fenstermaker HPC (12th Gen i9-12900K 64 GB) (Optimized, No HT, No Eff Cores)
Intel Xeon Gold 6248R (32 GB RAM) (Cloud Test Environment)
Microsoft Azure F72s (Intel Xeon Platinum 8370C CPU 144GB RAM)
Microsoft Azure FSV2 Baremetal Instance, Xeon Platinum 8270C, 128 GB
Microsoft Azure FSV2, Xeon Platinum 8272CL
Microsoft Azure FX12mds (Intel Xeon Gold 6246R CPU, 252 GB RAM)
Microsoft Azure VM, AMD EPYC 7V12
Midrange Desktop (Intel i9-9900) (No HT)
Midrange Desktop (Intel i9-9900) - 64GB RAM, Mapped Drive
Midrange Desktop i9-9900 (with HT)
Midrange Laptop (Intel Core i7-1070H, 32GB)
OpenMetal Private Cloud (2 x Intel Xeon Gold 6338 CPU, 32-Core/64-Thread)
Servers.com (Intel Xeon E-2288G CPU, 128 GB RAM)

3.0 1

2.54

2.0 4

154

Unit Runtime

1.0 1

0.5 4

EEEE R X EEERERERERXRE

2.5 50 75 10.0 12.5 15.0 17.5 20.0
Number of Cores

All Results are Recorded on the HEC-Commander GitHub Repo Source Blog Post:

. Benchmarking is All You Need
* Benchmarking results as CSV
* Markdown files containing datasets and plots
* Includes Al-generated python code

Drag-Drop this file into your favorite LLM, tell it your CPU and ask it for upgrade options

Parallelization In Practice
G|V|ng 70% tO Galn 70% Unit Runtime vs Cores

(Alder Lake Windows Workstation Optimized)

For an assumed 1 day runtime at 1 core Lor B it A ki s
2 Cores = 0.55 days 091
8 cores = 0.31 days 0sl

u% 0.7
Without parallelization, running at 2 cores E
is around 77% slower £ 00

0.5

With Parallelization utilizing all 8 cores 0.4t
3 run batches @ 2 cores = 0.55 Days 03l
3 runs at 8 cores = 0.93 days 1 2 3 4 5 6 7 8

Cores

With parallelization, batched runs sets are 72% faster w/same CPU by maximizing efficiency

But How Do We Parallelize

HECRASController Market Solutions

* Lack of Documentation e All Built on Linux/Cloud

* Limited to COM32 Interface * No access to latest versions
* No RASMapper Automation * Proprietary

e No Parallel Execution e Not Free

e Data Transfer Bottlenecks

A Better Solution was Needed
So | coded it myself with Al

Case Study: West Fork Calcasieu Model SR o LRsHED

Region 4, Louisiana Watershed Initiative

Leveraging and order of magnitude more compute and data allowed innovative calibration
and validation approaches with more deterministic results.

vty RA

Factor Sensitivty SGS 08014881 RAS River Stati

Revisiting The Bitter Lesson:

“Breakthrough progress eventually
arrives by an opposing approach based
on scaling computation by search and
learning”

R.H. Sutton

Thefutureis parallelization! You can
implement your own innovative tools
today with lower barriers to entry than
ever before by leveraging LLM's.

Stacking Gains From

Avoiding Public Cloud: 35% to 240% gains
* Depending on instance, provider
* Linux instances consistently performed ~15% faster than Windows

Maximizing Single Core Performance for Model Development

. . . 1G0T.99 ﬂﬂl‘mﬁ;’;ﬁ IIIIEl
e Disabling Hyperthreading: +10% ——— Blog Post:
* Disabling Efficiency Cores: Avoiding 5-25% Performance Penalty From 10x to 0.25x
By the Numbers

Maximizing Efficiency w/Batched Calibration/Validation, Parallelization
e Compute batches 70% faster on single machine
* Additional Linear Scaling through Remote Execution (+100% Per Machine)
* Roughness: ~50 runs, HMS Sensitivity/Calibration 96 Runs per set
* Tested with 12 total compute nodes, 48 parallel runs

We will come back to this again in the Case Study at the end of the presentation.

Back to Al:
What does the Future Look Like?

* Innovative new tools developed even closer to the technical experts
* Drastically lowered barriers to writing and executing code

* More automated data analysis methods

* Less technical drudgery

* More focus on higher-level planning and thinking

* Ability to quickly innovate around commercial software limitations

Al-Assisted Python Scripting:

3 Basic Levels of Al Interaction with Python Code:

Plain Language Only; Agentic
(Code Interpreter on ChatGPT Website)

Plain Language Only; Non-Agentic
(ChatGPT -> VS Code)

Manual Coding with Local Al-Enabled IDE
(Cursor)

Each level of interaction drastically shortens the learning curve into the next.

ChatGPT’s Code Interpreter is a wrapper for a Jupyter server with a sandboxed Python
Environment. This generates a plethora of training data, making Python the most efficient
language that GPT is most proficient at utilizing. By observing the python code generated
in code interpreter, the user becomes familiar with the libraries and methods utilized by
code interpreter, and becomes better able to direct the Al to create the desired output.

Al-Assisted Python Scripting:
Lowering Barriers to Increase Adoption

Al can assist beginner users with:

- Utilizing code autonomously with Code Interpreter

Explaining Code Segments

Step by step instructions on Development Environment Setup

Assembling bespoke workflows from natural language

Utilizing a vast array of open source python packages

This drastically lowers barriers to adoption and utilization python code,
and opens a new frontier of development of innovative software tools.

Emerging Use Cases of Large Language Models

Intelligent Voice Notes and Dictations

Office Application Assistant
“Help me with VBA Scripting in Excel”

Expert Software Assistants

Let’s explore what you can do at
the first level of interaction:

You are Here

Plain Language Only; Agentic “Write a QGIS script to do this”
(Code Interpreter on ChatGPT Website) . .
* Powerful Agentic Calculations
l “Fit a log-normal distribution to the data and

calculate return periods”
Plain Language Only; Non-Agentic
(ChatGPT -> VS Code)

Code Interpreter can handle:
l Basic GIS Operations
Sort/Filter/Display Datasets.
Create Charts and Graphs
Assemble simple code operations to solve
problems Excel can’t solve.

Input/Output files up to ~1GB

Manual Coding with Local Al-Enabled IDE
(Cursor)

Prompt Improvement Pipeline

As tasks are repeated, a prompt

improvement pipeline apprOaCh can be @1gand8twctur‘ing?rompt

adopted
@Know]edge Base and@

Each task is an opportunity to improve the < Adding Stop by Stop Instructions >
prompt and add or remove parameters. <>
Creating GPT

Iterating and Forking GPTs

Iterate

Automating small tasks, then larger tasks,
and eventually outgrowing the capabilities
of the web interface is the point.

G

Process Diagram Source

“Prompt Engineering”

The most impactful tips and tricks for improving
your prompts generally revolve around providing
the Al custom instructions and context:

When prompting an LLM, focus on:

* Providing clear, well-structured directions
* Use Delineators to Separate Instructions from Context

* Understand the Limitations:
* Limited Context Windows
* Limited Retrieval from Large Documents
* Probabilistic Operation, not Deterministic
* File size and library limitations in Code Interpreter
* No internet access (blame the Al safety patrol)

Be ready to Iterate, Iterate, Iterate!

Basic “prompt engineering” is typically:

Role (Persona)
Constraints
Contextual Data
Instructions
Desired Output
Examples

Prompts can also be structured as code

Your Al Assistant doesn't know what it's doing here, unless you tell it

Al-Assisted Python Scripting for Beginners:
Notebook Based, Code-Forward Approach

GPT can just as easily write a script for you to execute locally. Since the
backend for Code interpreter is a Jupyter Notebook, the format suddenly
became very useful for small to medium complexity scripts due to the ability to
have robust Al assistance.

By starting with small, useful operations that execute flawlessly within the code
interpreter environment, non-coding users can begin chaining simple
functionalities together within a local notebook, then iterating with GPT to
achieve their workflow automation.

Text Evaluation
W GPT-40 W GPT-4T | GPT-4(initial release 23-03-14) M Claude 3Opus ! Gemini Pro 15

Have Reasonable Expectations

100
w = Success Probability Heatmap
- 99.9% 100 100 100 100 100 39 99 99 99 99
75
99%} 99 98 97 9% 95 94 93 %2 91 90
50 I = 98%| 98 9 94 92 90 89 87 85 83 82
95%} 95 90 86 81 77 74 70 66 63 60
25 9
> 9%} 90 81 73 66 59 53 48 43 39 35
7
o by hur g 80% 80 64 51 a 33 26 21 17 13 11
S 8 S IS S S a
> < I 3 s a @
= g B i 2 2 & 70%p 70 49 34 24 17 12 8 6 4 3
= G = § = = o
E a
= 60%} 60 36 22 13 8 5 3 2 1 1
T e e— 50% 50 25 12 6 3 2 1 0 0 0
PhD-Level Science Questions
ML Benchmarks (GPQA Diamond)
AT Shembstr w2 e 40%F 40 16 6 3 1 0 0 0 0 0
MathVista (testmini) Physics =)
MMM::A:‘U) Biology [0 69.2
| 30%| 30 9 3 1 0 0 0 0 0 0
pass@1 accuracy " 1 L L L L L L L L
MMLU Categories 1 2 3 4 5 6 7 8 9 10
AP English Lang Global Facts Number of Steps
AP Physics 2 College Chemistry
S S At even a 88% accuracy rate, chained operations will still exhibit high probability of
AP Calculus Public Relations
o errors and hallucinations. The “regenerate” button is still your friend!
SAT EBRW Formal Logic.
¥ e Y ey ,
olimproves over GPT-40 on a wide range of benchmarks, including 54/57 MMLU subcategories. Iteratlng 's an 'ntegral part of us’ng LLM s'

Seven are shown for illustration.

But Walit

There’s More

Ak

RAS Commander Library
Scheduled for Release: Q1 2025

* Automation Library for HEC-RAS using Python
* \Version 6.x supported
* HEC-RAS 2025 Support with APl Documentation Release
* Built with Large Language Models

* Integrated Al Tools
* Context Window Driven Modularity
* Cursor Rules and GPT Instructions
* Knowledge Bases
Al Library Assistant
GPT with ability to load and visualize HEC-RAS data

* Goals:
* Data Accessibility
* Enabling Deeper Data Analysis
* Agentic Research Assistance
* Functional Replacement for HECRASController
* Embracing the Future with Large Language Model-driven Code

COMMANDER

Plan Parameters DataFrame:

{'1D Cores': @,
‘1D Flow Tolerance': nan,
‘1D Maximum Iterations': 2@,
'1D Maximum Iterations Without Improvement': @,
‘1D Maximum Water Surface Error To Abort’: 100.8,
1D Methodology': "Finite Difference’,
‘1D Storage Area Elevation Tolerance': ©.82,
‘1D Theta': 1.,
‘1D Theta Warmup': 1.8,
‘1D Water Surface Elevation Tolerance': 8.82,
'1D-2D Flow Tolerance': 1.0,
*1D-2D Gate Flow Submergence Decay Exponent': 1.0,
'1D-2D IS Stablity Factor': 1.,
'1D-2D LS Stablity Factor': 2.0,
‘1D-2D Maximum Iterations': @,
'1D-20 Maximum Number of Time Slices': 28,
*1D-2D Minimum Flow Tolerance': nan,
'1D-2D Minimum Time Step for Slicing(hours)': 6.0,
‘1D-2D Number of Warmup Steps': @,
'1D-2D Warmup Time Step (hours)': 0.8,
‘1D-2D Water Surface Tolerance': 8.02,
*1D-2D Weir Flow Submergence Decay Exponent': 1.8,
'2D Advanced Convergence’: array([@], dtype=uint8),
'2D Boundary Condition Ramp Up Fraction': array([e.5], dtype=float32),
'2D Boundary Condition Volume Check': array([b'False’], dtype="|S5'),
'2D cores (per mesh)': array([12]),

RAS-Commander Library Features

* Access All HDF
Datasets as
Pandas and
GeoPandas
Dataframes

* Common
Automation/
Execution

* Functional
Replacement for
HECRASController

Cross Section 20:
River: Bald Eagle

Reach:

Geometry:

Loc Hav

LINESTRING (1975868.58 295827.2, 1975727.52 295333.46, 1975545.3 294751.54, 1975533.54 293875.74)

Station-Elevation Points:

[R R P

o e e
W e ®

~
[N}

23

Station

Elevation

Station

415.00
425.00

450.00

460.00

Elevation

643.
642.

641.

W73

Station Elevation

Comparison of Hyetograph:
Positi

s

s for ARIs [1, 2, 5, 10, 25, 50, 100, 200, 500, 1000]
ion: 50% | Duration: 24 Hours

Incremental Precipitation (inches)

1es5.0@
1eg80.0@
1e85.0@
1123.28
1150.0¢
1155.0@
1200.00
1285.01
1260.00
1270.00
1315.01
1365.0@
1367.42
1385.00
1395.0@
1400.00
14@5.00
1410.02
1415.02
1510.0¢
1515.0@
1540.01
1545.0@
1554.14
1560.00
1565.00

Station

Elevation

111

115

118
119
12e
121
122
123

125
126
127
128
129

B

1570.00
1575.00
1620.00
1670.00
1675.00
1690.00
1740.00
1745.00
1775.00
1820.060
1860.60
1865.01
187e.01
1875.01
1905.00
1910.00
1915.00
1930.00
1935.00
194@.00
1945.09
1950.00
1955.09
1990.00
1999.16

Station

648.
648.
648.
650.
650.
650.
649,
649,
649.
649.
649.

649

649,
649,
658.
660.
661.
662.
662.
662.
661.
660.
659.
657.
656.

41
46
66
a5
12
13
49
48
70
78

Elevation

1D HDF Data Extraction

Cross Section Profile
River: Bald Eagle, Reach: Loc Hav, RS:

114899.8
Left Bank Station: 465.0, Right Bank Station: 1980.7099609375

720

700

Elevation (ft)
&
8

8
g

640

620

@ Left Bank Station
® Right Bank Station

230000

Northing
]
g
2

10000

00000

290000

[500 1000 1500
Station (ft)

River Edge Lines, Centerline, and Bank Lines

2000

2500

— Rivar Edge Lines
-~ River Centerfine
— River Bank Lines

Easting

350000

340000

330000

320000

310000

300000

290000

Cross Sections Colored by Manning's n Values

iy,

N N

Manning's n Value

2.02

2.04

2.06
le6

1D HDF Data Extraction

Time of Maximum Water Surface Elevation at Cross Sections

Water Surface

Velocity Channel

Water_Surface at Bald Eagle Loc Hav 136202.3 30h
668
666 350000 -
664 25h
662
340000 A
660
658 20h &
I
:@ :@ f'l-“ Y v ,\'3, '_19' 330000 A Py 2
N <) < S B v ‘e 5
& & o £ ey & & o ' =1
& & F & & f < 2 3
Time £ ... J >
B 15h E
§ 320000 4 & °
Velocity_Channel at Bald Eagle Loc Hav 136202.3 > ' E
w
¢ o g
=]
[=}
310000 - ¥] 10h T
300000 -
5h
o o o ~ o » >
& & p‘»ﬂ’ 9'1:" S;L“’ ’.@"" 9"? 290000
{aqq & eq% ‘&qca < e@ ‘»q°) i ; i ; r oh
Time 1.98 2.00 2.02 2.04 2.06

X Coordinate le6

Water Surface Elevation (ft)

2D HDF Data Extraction

‘Water EUﬁaggaE'mSiEﬁj'ime Series for Random Cell (ID: 7630)

— Cell ID: 7630

2018-09-09 2018-09-10 2018-09-11 2018-09-12

Time

2018.09-13 2018-09-14

Water Surface Elevation (ft) - Node 013-DMH017

— ARI1years e — I S—
—— ARI2 years
—— ARIS years
— ARI 10 years
—— ARI25 years
—— ARI S0 years
—— ARI 100 years
—— ARI 200 years
ARI 500 years
—— ARI 1000 years

Y Coordinate

Time of Maximum Water Surface Elevation per Cell

370000 +

360000

350000

340000 ~

330000

320000

310000 +

300000 4

290000 -

2.00 2.02 2.04 2.06
X Coordinate

120h
114h
108h
102h
96h
90h
84h
78h
72h
66h
60h
54h
48h
42h
36h
30h
24h
18h
12h
6h

Oh

Hours since simulation start

Y Coordinate

2D HDF Data Extraction

Max Courant Number per Face Max Water Surface Error per Cell

370000 370000 4
0.6
360000 360000
0.008
05
350000 350000
N g
340000 048 340000 0.006 &
5 E - =
S o w
330000 & C 330000 E
3] a
038 ©]
% . 4
320000 z 320000 4 0.004 2
=
0.2
310000 310000 1
0.002
300000 o1 300000
290000 290000
; ; ; i ; ; 0.0 ; ; ; ; ; : 0.000
1.98 2.00 2.02 2.04 2.06 2.08 1.98 2.00 2.02 2.04 2.06 2.08

X Coordinate le6 X Coordinate 1e6

Enabling Novel Data Analysis and Research

* Discharge-weighted average velocity is not readily available in HEC-
RAS. Reference lines are used to extract summary results along 2D
profile lines, but do not currently support the calculation of
discharge-weighted average velocity.

* This is an important limitation on 2D sediment transport modeling

* One of the use cases that will be published with the library is the use
the results arrays to directly calculate discharge-weighted average
velocity using a user-drawn profile line which can be placed after
results are calculated (unlike reference points and lines).

Northing

Mesh Cell Faces and Profile Lines
1e6

7.858 A

—— Mesh Cell Faces

-~ Profile Lines

7.857

7.856

7.855 A

7.854 A

7.853

[&L,

7.852 A

7.851

/

—a

[/

1.025

1.026

Factinn

1.027

1e6

Northing

Mesh Cell Faces and Profile Lines

Numbered in order along profile
le6

7.858 A

7.857 A

All Mesh Faces
—— Faces near Profile Line 1
—— Faces near Profile Line 2
—— Faces near Profile Line 3
== Combined Face Lines

7.856

7.855

7.854 -

7.853

7.852 A

7.851 A

\
\
1
|
1.025 1026 1.027

Factinn 1e6

Velocity Comparison - Prafile Line 1

elocity (fts)

Peak Weighted: 4.29

-+ Peak Average: 3.10

20190401 20190405 20190409 20190413 20190417 20150421 20190425 2019.04FM9-0501 20150505

Veloeity (f7s)

Velocity Comparisan - Profile Line 2

Poak Weighted: 4.85

" Paak Average: 2.82

20190401 20190405 20190409 20190413 20190417 20190421 20190825 0190490501 20190505
Time

o3

o0

Velocity Comparisen - Profile Line 3

Paak Weighted: 3.43

20190401 70190405 10190405 20190413 20190417 20150421 20190425 20190450501 3019.0505
Time

face 0370
— Oischarge weighted veiacity
- Simple.

Face D 52
— Discharge-Weighted Velocity
---- Simple Average

Face 10 532
— Discharge Weighted Veloziy
Sumpie Average

Northing

Pipes and Conduits Data Extraction

1ee Pipe Netwark with Node Elevaticns.

1e6 Pipe Conduit Network Layout — s

® roses

1m0

1.968 -

fr™ oo

1.967

1.966

s

e

1.965

1.964 1

23

1.963 1

18
1.962

25

1.961

6.628 6.630 6.632 6.634 6.636 6.638 6.640
£astimg o e wa e e o o T

Al Library Assistant
* Bring your own API Keys

RAS Commander Library Assistant
¢ Re p O EX p I O re r Project Files Chat Window

Selected: 0 tokens User 2
= ~7 4 Ineed to build a script to further post-process the stored maps
- B tools maps a folder with the same name as the results
+ [&7 build that contain: oth (Max)", and "Velocity (Max)" in the file name (raise an error if other tif files exist
+ [T dist Start a fresh jupyter notebook with all required logic from the rasmapper stored m: sistant an the

nd stored map sk. Then, y the fc 3. Al of the

B [dashboard.py g post

I {O a d | I l a . [pingmachines ipynb . h
poi
- [0) rasmapper_layer_inserter - simplified spec -

Using the max depth layer, find all depths less than 0.5ft and

tion, origin and res e all derived from the same terrain. This means we

S in each results layer to each other

delete those points in all results rasters
[0 rasmapper_layer_inserter py

Using the velocity layer, mask all areas where depth is greater than 1ft and max velacity is less than 0.1fs, and create a masked

[rasmapper_layer_inserter spec
L]
* RAG Mode (coming soon) =iz
() [rasmapper_stored_map_assistant spec

B [cursorrules

amed "Isolated_Flood_Areas tif” which his mask

s the max velocity value:

das and rasterio

onality of the RAS Map

asterio for t

1ap Ass

[0 Comprehensive_Library_Guide md

t-processing tasks you've described

* Agentic Code Execution e o

e spatial operations anc

[STYLE_GUIDE.md

0 [future_dev_roadmap.ipynb
coming soon
[requirements txt

Selected Files: 0 files
Selected Tokens []

Estimated Context Costs:

Claude 3.5 $0.0000
GPT-4 $0.0000
GPT-4 Mini: $0.0000

Your message

398 (anthropic)

Estimated Cost

RAS-Commander GPT

 Limited by OpenAl’s GPT
framework, but still a novel way
of interacting with the library

* Load Small Projects with Code
Interpreter

e Visualize Results and Perform Data
Analysis

e Ask General Questions
e Short Context is Best for Now

Ask for Early Access to the RAS
Commander Repository or wait for
Public Release in Q1 2025

The "Pipes (beta)" project has been loaded successfully. Let me know if you'd like
to explore specific aspects of this project, such as inspecting geometry, boundary

conditions, or plan details. (-]

get the results for plan 02. Use HdfPipe
extract_timeseries_for_node to extract time series results
for node 88

Analyzed ~
A
python

Always show details () (P Copy code

from ras_commander import HdfPipe

plan_number = "02"

node_id = 88

try:

plan_hdf_path = RasPlan.get_results_path(plan_number)

hdf_pipe = HdfPipe(plan_hdf_path)

time_series_data = hdf_pipe.extract_timeseries_for node(node_id)

time_series_data_display = time_series_data.head()

HEC-Commander Repository

Open Source Notebooks:

SCRIPT TRANSLATER

OUTLINE IN PLAIN LANGUAGE.

=

HEC-Commander
Repository (GitHub)

TERRAINMOD PROFILER,

