

Comparing Different Methods to Calculate Riverine Flooding from Significant Rainfall

Connecticut Association of Floodplain Managers Conference November 13, 2024

Presented by Christine Suhonen, P.E.

Presentation Outline

- 1. Project Background
- 2. How We Performed the Rainfall-Runoff Analysis
- 3. Another Method
- 4. Comparison
- 5. Other Methods
- 6. Observations

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION ANAGEMENT

THE PARTY CONTRACT

PACE A CLEAR

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION

Westport, CT

1 And Alle

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION CONSTRUCTION

GZN

Project Background

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION

1 Stankola

441-2017-2

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION CONSTRUCTION

at the state of the

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

Goal: Model flooding in each stream for the:

- 10-year
- 25-year
- 50-year
- 100-year and
- 500-year floods.

1 Stanker

Delineate Watersheds and Subwatersheds

THE STATE OF THE S

X- Ward - K

Snyder Unit Hydrograph Method

Calculate runoff using equations relating flow with these parameters:

- Rainfall (in.)
- Drainage Area (sq. mi.)
- Lag time (hr.)
- Peaking Coefficient
- Initial Loss (in.) (soil infiltration)
- Constant Loss (in/hr) (soil infiltration)

Snyder Unit Hydrograph Method

Calculate runoff using equations relating flow with these parameters:

- Rainfall (in.)
- Drainage Area (sq. mi.)
- Lag time (hr.)
- Peaking Coefficient
- Initial Loss (in.) (soil infiltration)
- Constant Loss (in/hr) (soil infiltration)

These variables are calibrated in a model by simulating historic storms.

Westport's streams are ungauged so GZA used a watershed nearby to calculate the parameters and then translated these parameters to our watersheds.

Calibration

April 1996 Total Precipitation: 3.19"

Calibration

1 3 Alles

Sept 2004 Total Precipitation: 1.88"

Calibration

KAR ANCK

April 2006 Total Precipitation: 5.84"

Calibration and Verification

4 storms used to calibrate and 3 storms used to verify the parameters.

- April 1996
- September 2004
- April 2006
- April 2007
- March 2010 (1)
- March 2010 (2)
- May 2014

- Rainfall (in.)
- Drainage Area (sq. mi.)
- Lag time (hr.)
- Peaking Coefficient
- Initial Loss (in.)
- Constant Loss (in/hr)

Ready to model our subwatersheds!

Simulate storms in Westport's watersheds

1 Stanking

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION

Terrain

Land Use

and K

Field Reconnaissance

A CALLAN STAN

THE STATE OF THE STATE

7.3'

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTIO

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION

Time (hours)

ATTACK AND A STATUS

GZN

How we did the project

HEC-RAS Computations		
Write Geometry Information		
Layer: Complete		
Geometry Processor		
River:	RS:	
Reach:	Node Type:	
IB Curve:		
Unstandy Flow Cimulation		
Simulation:		
Time: 0.1226 011002000 00:07:20	Iteration (2D): 10	
Unsteady Flow Computations		
Computation Messages		
Plan: 'IRInflow100yrPlan Proposed' (India	nRiver.p18)	
Simulation started at: 19Oct2017 01:43:54 PM		
Using 64 Bit Computation Engines		
Writing Geometry		
IndianRiver: Mesh property tables are current.		
Completed Writing Geometry		
Geometric Preprocessor HEC-RAS 5.0.3 September 2016		
Finished Processing Geometry		
Writing Event Conditions		
Event Conditions Complete		
Performing Unsteady Flow Simulation HEC-RAS 5.0.3 September 2016		
Pause Take Snapshot of Results		Stop

1233440

GZN

How we did the project

GEOTECHNICAL
ENVIRONMENTAL
ECOLOGICAL
WATER
CONSTRUCTION

Image: Construction of the second sec

G7

How we did the project

CONSTRUCTION MANAGEMENT WATER GEOTECHNICAL ENVIRONMENTAL

a second a second and a second a second

SHITTER SHUMA

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION

