

My question: Can we model the rainfall directly in HEC-RAS?

 GEOTECHNICAL
 ENVIRONMENTAL
 ECOLOGICAL
 WATER
 CONSTRUCTION

 Image: State of the state of the

Assigned 100-year excess rainfall as the input to HEC-RAS.

Snyder Unit Hydrograph Method

Calculate runoff using equations relating flow with these parameters:

- Rainfall (in.)
- Drainage Area (sq. mi.)
- Lag time (hr.)
- Peaking Coefficient
- Initial Loss (in.) (soil infiltration)
- Constant Loss (in/hr) (soil infiltration)

These parameters are now eliminated from the analysis.

600

500

400

200

100

0

0.00

6.00

H0 300

Comparison

CONSTRUCTION GEOTECHNICAL ENVIRONMENTAL

1 stanles

Comparison

 GEOTECHNICAL
 ENVIRONMENTAL
 ECOLOGICAL
 WATER
 CONSTRUCTION MANAGEMENT

133346

Page | 33

Comparison

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

ATTACK AND A STANKER IN

SA X

Comparison

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION CONSTRUCTION

15 - States

Other Methods

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION

What about PCSWMM? What about StreamStats?

Calculate runoff using an equation relating flow with these parameters:

- Rainfall (in.)
- Drainage Area (sq. mi.)
- Initial Loss (in.) (soil infiltration)
- Constant Loss (in/hr) (soil infiltration)
- Watershed "Width" (PCSWMM computes from terrain)
- Watershed Slope (PCSWMM computes from terrain)
- Overland Manning's n
- Depression Storage

Watershed Delineation Tool (WDT)			? ×		
کر کر تک	Watershed Delineation Tool (WDT) Delineates subcatchments and creates a drainage system from a DEM. The drainage system will be connected to an existing SWMM link/node network (if one exists).				
for an	DEM layer:	NewCreek_Stream_4ft	- 1		
	Bum-in stream layer:	Optional	🔻 🎽 💳 🔅		
ىر د	Delineation points layer:	Outfalls	- 🚺 🚥		
	Target discretization level:	2000 ac			
Remove all WDT created entities		Delineate watersh	ed <u>C</u> ancel		

StreamStats for Connecticut

Calculate peak runoff using equation with variables :

- Drainage Area (sq. mi.)
- Percentage of Soil C/D
- Rainfall (in.)

StreamStats: 200 cfs

PCSWMM: 610 cfs (Manning's n of 0.4 for overland flow)

StreamStats: 620 cfs

PCSWMM: 1,050 cfs (Manning's n of 0.4 for overland flow)

1 Adada

Observations

- Peak flow from precipitation simulation tends to be higher.
- Time of peak flow from precipitation simulation tends to be earlier.
- Difference in simulations are lessened downstream of structures that cause significant obstructions (Interstate, Railroad).
- Precipitation simulation results in some of the runoff being stored in topographic low points.
- PCSWMM generates hydrograph with very few inputs, but Manning's n is difficult to assign and hydrograph does not show lag time.

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

Questions?

Contact Information: Christine.Suhonen@gza.com 914-450-7925

Info on Hydraulic Model

Table 6: Manning's n Values for Different Land Uses

÷‡•		-		
	Land Use	Manning's n	Land Use	Manning's n
	Stream	0.035	Developed	0.2
	Building	0.5	Turf and Grass	0.04
	Pavement	0.025	Other Grass	0.04
	Ag. Field	0.03	Deciduous Forest	0.1
	Water	0.035	Coniferous Forest	0.1
	Non-Forested Wetland	0.05	Barren	0.03
	Forested Wetland	0.08	Utility	0.1
	Tidal Wetland	0.08		
		-		

Grid Cell size = 30 feet Terrain Resolution = 4 feet

Info on Watershed Sizes

- Indian River (0.9 square miles);
- Muddy Brook (2.7 square miles);
- New Creek (0.9 square miles);
- Poplar Plains Brook (1.1. square miles);

- Pussy Willow Brook (1.3 square miles);
- Silver Brook (1.1 square miles);
- Stony Brook (3.3 square miles); and
- Willow Brook (0.9 square miles).

March 2010 Storm

TUESDAY, MARCH 30, 2010

(http://www.westportnow.com/index.php)

Photo from March 30, 2010 during daylight. No exact time of photo.

Muddy Brook is Muddy—and Flooded

(http://cdn.westportnow.com/ee/images/uploads/muddybrook03301001pop.jpg) Westport's Muddy Brook was among waterways running over their banks today. This view is off of Hillandale Road in Westport's Greens Farms area. Westport has had almost 5 inches of rain since Sunday night. (CLICK TO ENLARGE) Ned Hardy for WestportNow.com

Posted 03/30/10 at 08:43 PM Permalink

and the stand

(http://www.westportnow.com/index.php?/v3/comments/muddy_brook_is_muddy_and_flooded/)

March 2010 Storm

THE STATES

HELEN CITE

March 2010 Storm

For small watershed – can't calibrate without time of photo.

CALLER STREET, COMMENCE SOUTH

600

500

400

200

100

0

0.00

6.00

H0 300

Other Methods?

CONSTRUCTION MANAGEMENT GEOTECHNICAL ENVIRONMENTAL

1 Stanles

1 3 Alle

Other Methods?

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION CONSTRUCTION

ATTACK AND A STANKER IN

and L

Indian River

Other Methods?

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

Difference in WSEL = 1 ft

and 2

Page | 51

Other Methods?

Other Methods?

 GEOTECHNICAL
 ENVIRONMENTAL
 ECOLOGICAL
 WATER
 CONSTRUCTION MANAGEMENT

Page | 54

Other Methods?

and the stand